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MATHEMATICAL 
ORDER
Regular geometric 
designs of great 
sophistication are 
common in traditional 
Islamic architectural 
decoration, expressing 
a sense of an orderly 
cosmos. Some of these 
Islamic artists seemed 
particularly drawn to 
pattern elements that 
cannot in themselves be 
packed into identically 
repeating arrays—such as 
pentagons and octagons.
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It’s a habit hardwired into our brains. From a 
baby’s fi rst inklings of repeated sounds and 
experiences, recognizing pattern and regularity 

helps us to survive and make our way in the 
world. Patterns are the daily bread of scientists, 
but anyone can appreciate them, and respond 
to them with delight and wonder as well as with 
aesthetic and intellectual satisfaction. Just about 
every culture on earth, from the ancient Egyptians 
to Native Americans and Australian Aborigines, 
has decorated its artifacts with regular patterns. 
It seems that we fi nd these structures not only 
pleasing but also reassuring, as if they help us 
believe that, no matter what fate brings, there is a 
logic and order behind it all.

But when we make our own patterns, it is 
through careful planning and construction, with 
each individual element cut to shape and laid 
in place, or woven one at a time into the fabric. 
The message seems to be that making a pattern 
requires a patterner. That’s why, when people in 
former times recognized patterns in nature—the 
bee’s honeycomb, animal markings, the spiraling 
of seeds in a sunfl ower head, the six-pointed 
star of a snowfl ake—they imagined it to be the 
fi ngerprint of intelligent design, a sign left by 
some omnipotent creator in his handiwork.

Today, we don’t need that hypothesis. It’s clear 
that pattern, regularity, and form can arise from the 
basic forces and principles of physics and chemistry, 
perhaps selected and refi ned by the exigencies of 

biological evolution. But that only deepens the 
mystery. How does the intricate tapestry of nature 
contrive to organize itself, producing a pattern 
without any blueprint or foresight? How do these 
patterns form spontaneously?

There are clues in how they look. Perhaps 
the most curious thing about natural patterns is 
that they come from a relatively limited palette, 
recurring at very different size scales and in 
systems that might seem to have nothing at all 
in common with one another. We see spirals, say, 
and hexagons, intricate branching forms of cracks 
and lightning, spots and stripes. It seems that 
there are types of pattern-forming process that 
don’t depend on the detailed specifi cs of a system 
but can crop up across the board, even bridging 
effortlessly the living and the non-living worlds. 
In this sense, pattern formation is universal: it 
doesn’t respect any of the normal boundaries that 
we tend to draw between different sciences or 
different types of phenomena.

Growth and form?
Do these patterns have anything in common, or is 
the similarity in their appearance just coincidence?

The fi rst person to truly grapple with that 
question was the Scottish zoologist D’Arcy 
Wentworth Thompson. In 1917 Thompson 
published his masterpiece, On Growth and 
Form, which collected together all that was then 
known about pattern and form in nature in a 

Introduction
The world is a confusing and turbulent place, but we make sense of it by 
fi nding order. We notice the regular cycles of day and night, the waxing and 
waning of the moon and tides, and the recurrence of the seasons. We look 
for similarity, predictability, regularity: those have always been the guiding 
principles behind the emergence of science. We try to break down the 
complex profusion of nature into simple rules, to fi nd order among what 
might at fi rst look like chaos. This makes us all pattern seekers.
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stunning synthesis of biology, natural history, 
mathematics, physics, and engineering. As the 
title indicates, Thompson pointed out that, in 
biology at least, and often in the non-living 
world, pattern formation is not a static thing but 
arises from growth. “Everything is what it is,” he 
said, “because it got that way.” The answer to 
the riddle of pattern lies in how it got to be that 
way—how the pattern grew. That’s less obvious 
than it sounds: a bridge or a paddy fi eld or a 
microchip is “explained” by how it looks, not by 
how it was made. 

Part of Thompson’s agenda was to put a brake 
on the runaway enthusiasm that had developed at 
that time for explaining all form and order in the 
living world by invoking Charles Darwin’s theory 
of natural selection—to say that the pattern was 
there because it served some adaptive purpose in 

helping the organism to survive. Not necessarily, 
Thompson cautioned. Perhaps nature simply had 
no choice: the shape is decided by the dictates 
of physical forces, not by the convenience for 
biology. Even living creatures have to be soundly 
engineered to withstand the whims of fate. It was 
a timely reminder of the constraints on Darwin’s 
theory, but it doesn’t actually confl ict with it. In 
the living world, pattern formation seems both 
to restrict the options for adaptive change and 
to offer new adaptive opportunities—to operate, 
in other words, in parallel and sometimes in 
sympathy with Darwinian evolution. It supplies, 
for example, the color markings that animals put 
to striking use for camoufl age, or as warning signs 
to predators, or so that members of a species can 
recognize each other. These patterns might not be 
arbitrary, but they can be useful.

1 NATURAL 
EXUBERANCE
The glorious plumage 
of the vulturine 
guinea fowl, native to 
northeastern Africa. 

2 PATTERN 
EVERYWHERE
Regularity and order 
pervade the natural 
world, both living and 
non-living. Sometimes 
it takes a microscope 
(or a telescope) to see it, 
as in the case of these 
pollen grains.
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At the same time, however, Thompson’s book 
helped to show why it was not simply coincidence 
that the same patterns and forms ranged across 
the sciences—why, say, the arrangements made by 
soap bubbles might resemble those of clusters of 
living cells or the meshlike skeletons of small sea 
creatures, why snail shells and ram’s horns curl 
into mathematical spirals, why animal backbones 
are shaped like cantilever bridges.

In the midst of wonders
He didn’t get everything right, by any means, but 
Thompson was on the right track. In the century 
that has elapsed since On Growth and Form
was published, many new natural patterns have 
been identifi ed and explained, and today there 
are scientists who specialize in studying these 
things, aided by conceptual, experimental, and 
computational tools that Thompson lacked. The 
questions are fascinating and challenging, but 
it’s hard not to suspect that a big part of the 
allure is aesthetic: these forms and arrangements 
are also beautiful. 

These patterns affi rm, too, what the American 
physicist Richard Feynman said about the workings 
of the universe: “Nature uses only the longest 
threads to weave her patterns, so each small piece 
of her fabric reveals the organization of the entire 
tapestry.” The principles that operate in the world 
are general ones, and you can sometimes read 
them as clearly in a small corner as in a big vista: 
in a saucepan on the stove, you might see an 
intimation of the convection patterns that arrange 
the clouds across the sky, for example, while 
the network of veins in your body echoes (for 
good reason) the great river networks that cross 
continents and shape mountain ranges.

This doesn’t mean to say that one grand 
theory explains all these things, although some 
scientists have dreamed, and still dream, of such a 
thing. But it does make many patterns variations 
on a theme, and refl ects the fact that they often 
arise from broadly similar processes—ones in 
which some driving force, be it gravity or heat or 
evolution, prevents the system from ever settling 
into a steady, unchanging state; in which various 

infl uences interact with each other, sometimes 
reinforcing and sometimes competing; in which 
patterns and forms might switch abruptly to a 
new shape and appearance when the driving 
force exceeds some threshold value; in which 
small events can have big consequences and what 
goes on here can infl uence what transpires at a 
distant point there; and in which accidents may 
get frozen into place and determine what unfolds 
thereafter. There is no Law of Pattern Formation, 
but there is perhaps a recipe book.

This book will certainly not explain all or even 
most of those prescriptions. That’s been done 
elsewhere (see Further Reading, page 283, for 
examples). The aim here is to offer a fl avor of 
the recipes, but most importantly, to display the 
results in all their glory. This, perhaps more than 
any other fi eld of scientifi c study, is a topic driven 
by wonder. I confess that some of the images in 
these pages are ones that science can’t yet fully 
explain; perhaps the general principles are clear, 
but not the details and nuances. There are also 
some images that are included not because they 
illustrate a clear or single scientifi c process but 
because of their sheer splendor. We need that 
too. We need to marvel and admire as well as 
to analyze and calculate. Natural patterns offer 
raw delights, but they also point to something 
deep, as Feynman intimated. They show that, 
sometimes, to understand the world we need 
not only to dissect it into its component parts but 
also to build it back up again. Forms and effects 
emerge from the rich interplay of components 
in a way that you would—indeed could—never 
guess by looking at them individually. It is not 
mere mysticism or anthropomorphism to suggest 
that this emergence of new form reveals a kind of 
spontaneous creativity in nature. The world uses 
simple principles to bring forth variety and riches, 
Darwin’s “endless forms most beautiful.” Some of 
that beauty is captured here.

THE PATTERN 
PALETTE
Certain forms, shapes, 
and patterns recur again 
and again in the natural 
world, in systems that 
seem to have nothing 
to do with one another. 
Waves of growth are one 
of them, as can be seen 
in this piece of agate.





1
Why your left is like your right
(and why it’s diff erent)

SYMMETRY
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What is a pattern, anyway? We usually think of it as something that repeats 
again and again. The math of symmetry can describe what this repetition 
may look like, as well as why some shapes seem more orderly and organized 
than others. That’s why symmetry is the fundamental scientifi c “language” 
of pattern and form. Symmetry describes how things may look unchanged 
when they are refl ected in a mirror, or rotated, or moved. But our intuitions 
about symmetry can be deceptive. In general, shape and form in nature arise 
not from the “building up” of symmetry, but from the breaking of perfect 
symmetry—that is, from the disintegration of complete, boring uniformity, 
where everything looks the same, everywhere. The key question is therefore: 
why isn’t everything uniform? How and why does symmetry break?

People dreamed of an ordered universe even in 
ancient times—perhaps especially then, when 
they were more vulnerable to the random 

whims of nature. “God, wishing that all things 
should be good, and so far as possible nothing 
be imperfect,” wrote the Greek philosopher Plato 
in the fourth century BCE, “reduced the visible 
universe from disorder to order, as he judged that 
order was in every way better.” Plato imagined 
a universe created using geometric principles, 
based on ideas about harmony, proportion, and 
symmetry. It is a vision that has resonated strongly 
ever since. Symmetry is one of the key concepts 
that modern physicists use to understand the 
world, and they believe its deepest laws will show 
this feature.

What exactly are these properties of symmetry 
and pattern that we fi nd in nature, and where 
do they come from? The best way to understand 
symmetry is as a property of an object or structure 
that allows us to change it in some way while 

leaving it looking just the same as it was before. 
Think of a sphere: you can rotate it any way you 
like, and you’d never know: it appears unchanged. 
Or think of the grid of lines on a piece of graph 
paper. If you move the paper exactly one grid 
square’s width in a direction parallel to the lines, 
the grid is superimposed on how it looked at 
the outset.

These are both symmetries, but of different 
kinds. The sphere has so-called rotational 
symmetry, meaning that its appearance is 
unchanged by rotation. The graph paper has 
(ignoring the edges) translational symmetry: 
a “translation” here means a movement in 
a particular direction. The sphere in fact has 
perfect rotational symmetry, meaning that it is 
symmetrical for any angle of rotation. Imagine 
instead a soccer ball made from hexagonal and 
pentagonal patches sewn together: only certain 
rotation angles will superimpose the hexagons 
and pentagons exactly on their initial positions.

PATTERNS IN NATURE
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1 SUBTLE SYMMETRY 
The sand dollar, a kind 
of sea urchin, seems 
to pretend that it has 
fi vefold symmetry, like a 
pentagon—but the oval 
slots undermine it.

2 ARE ALL PEBBLES 
ALIKE?
Even pebbles have, on 
average, a characteristic 
shape that can be written 
in mathematical terms, 
which describes the range 
of different amounts of 
curvature they have over 
their surfaces. 

Another kind of symmetry is refl ection, which 
is really just what it sounds like. If you put a mirror 
upright on the graph paper, the refl ection in the 
mirror looks just like the piece of the sheet that 
lies behind it. This is exactly true only if the plane 
of the mirror is placed in just the right position: 
it has to run either along one of the grid lines or 
exactly at the halfway point of a square, so that 
the half-squares you can see and the other halves 
in the mirror refl ection look like a full square. 
There’s another place you can put the mirror, too: 
exactly along the diagonals of the squares, at an 
angle of 45˚ to the grid lines. So this is another 
of the pattern’s “planes of symmetry.” If the angle 
is any different from 45˚, the refl ection doesn’t 
superimpose exactly on the original grid that it 
hides: that isn’t a true plane 
of symmetry.

Mathematicians call these rotations, 
refl ections, and translations “symmetry 
operations”—movements that don’t alter the 

appearance of the object. A plus sign and a 
square have the same symmetry: they have an 
identical set of operations that leaves them 
looking unchanged. A square grid, meanwhile, 
has a different set of operations from a hexagonal 
grid such as a bee’s honeycomb or chicken wire.

Bodies
One of the most common kinds of symmetry 
that we see in the natural world is called bilateral 
symmetry. An object with this symmetry looks 
unchanged if a mirror passes cleanly through its 
middle. To put it another way, the object has a 
left side and a right side that are mirror images 
of each other. This, of course, is a characteristic 
of the human body, although little random 
quirks and accidents of our life history make 
the symmetry imperfect. There’s some evidence 
that people whose faces are more symmetrical 
are deemed more attractive on average, and it 
has also been claimed that other animals with 

“Symmetry is one of the main concepts that modern physicists use to 
understand the world.”

15SYMMETRY



1 2

3

16

1 JELLYFISH
“Endless forms most 
beautiful”: this is how 
Charles Darwin described 
the shapes made by 
evolution.

2 LOW TIDE 
Patterns in sand appear 
spontaneously, engraved 
by nature’s forces. 

3 BILATERALISM
A tale of two halves: the 
atlas moth.

PATTERNS IN NATURE

bilaterally symmetrical bodies have more mates 
the more symmetrical they are. 

Bilateral symmetry seems almost to be the 
default shape for animals. Fish, mammals, insects, 
and birds all share this attribute. Why is that? 
One possibility is that bilateral symmetry makes 
it easier to move in a specifi c direction: think of 
the streamlined gliding of a fi sh, compared with 
the awkward wriggling of a starfi sh. Or perhaps 
a bilateral body meant that such creatures could 
develop a spine and central nervous system, which 
has advantages in terms of organizing nerves into 
a brain. Even starfi sh have evolved from bilateral 
ancestors, and in fact their larvae are still bilateral: 
starfi sh only develop their fi vefold symmetrical 
bodies as they mature into adults. This kind of 
shape, which can be superimposed on itself by 
rotating through a particular angle around one 
axis, is said to be “radially symmetrical.”

Animals fi rst acquired bilaterally symmetrical 
body designs at least half a billion years ago, and 
branches of the animal kingdom that don’t share 
this form show that the alternatives tend to have 
more permissive symmetries, or none at all. There 
are, for example, the sponges and corals, which, 
with their tubular, branched, or crinkly funguslike 
shapes, might easily be mistaken for sea plants. 
There are tentacled anemones, which often have 
an approximate radial symmetry: they have an 
obvious top and bottom, but from the side they 
look the same from any angle.

Symmetry-breaking and patterning
All kinds of systems and processes, involving both 
living and non-living objects, can spontaneously 
fi nd their way into more or less orderly and 
patterned states: they can self-organize. There 
is no longer any reason to appeal to some 

“Bilateral symmetry seems almost to be the default for animals. Fish, 
mammals, insects, and birds all share this attribute.”
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4 A GOOD TURN 
A coral with radial 
symmetry: rotate it, 
and every few degrees 
it looks identical.

5 SEEING THE POINT
The starlike radial 
symmetry of a 
freshwater hydra.
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divine plan to explain this, and there is nothing 
mysterious about it—but that need not diminish 
our sense of wonder and appreciation when we 
see it happen. Without any blueprint or guidance, 
molecules, particles, grains, rocks, fl uids, and 
living tissues can arrange themselves into regular, 
sometimes geometrical patterns. The laws of 
nature seem capable of delivering “order for free.” 
Patterns appear in systems even though we can’t 
fi nd any prescription for them in the fundamental 
rules that govern how their individual components 
behave. In this case, the patterns and ordering 
are said to be emergent: they are a property 
of the whole system, not deducible by looking 
reductively at the separate parts.  

Symmetry is at the root of understanding 
how such patterns appear. Because in everyday 
terms we associate patterns with symmetry—think 
of the designs on wallpaper or Persian rugs, for 

example—we might be inclined to imagine that 
the spontaneous appearance of a pattern in 
nature involves the spontaneous generation of 
symmetry. In fact, the opposite is true. Pattern 
comes from the (partial) destruction of symmetry.

The most symmetrical thing you can imagine 
is something that you can rotate, refl ect, or 
translate any which way and yet it still looks the 
same. That’s true if the thing is perfectly uniform. 
So to get pattern from something that is initially 
unpatterned and uniform involves reducing the 
symmetry: it is what scientists call a process of 
symmetry-breaking, which is nature’s way of 
turning things that are initially the same into 
things that are different. The more symmetry 
that gets broken, the more subtle and elaborate 
the pattern. 

Randomness might seem the opposite of 
uniformity, but the two can be equivalent: a 
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random structure is perfectly symmetrical and 
uniform on average, which means that it too 
recognizes no “special” directions in space. In the 
natural world, perfect uniformity or randomness 
are surprisingly hard to fi nd, at least at the 
everyday scale. Put yourself on a seashore. The 
sky is scattered with clouds, perhaps patterned 
into rows or feathery cirrus. The sea’s surface is 
wrinkled into waves that arrive on the shore with 
a distinctive pulse. There are plants around the 
shore, each with its own characteristic shape of 
fl ower and leaf. The sand at the water’s edge is 
grooved with ripples, and strewn with the delicate 
whorls of shells. All around there is shape and 
form: diverse, yes, but far from random, far 
from uniform. Symmetry is being broken, again 
and again.

Cause and effect
In the natural world, when symmetry breaks we 
often have no cause to have anticipated it. Here’s 
what I mean. If we turn a random pile of bricks 
into the regular pattern of a wall, it’s because 
we have laid each brick in place. The uniform 
symmetry of a sheet of paper is broken in making 
a paper airplane because we folded it that way. In 
other words, the symmetry gets broken by some 
force—our moving hand—that compels it to 
break that way. It’s obvious where the symmetry-
breaking came from: we put it there.

Compare this to a droplet falling onto the 
still surface of water. At the start it is perfectly 
circularly symmetrical: it looks the same in any 
direction parallel to the surface. But then the 
splash develops a rim that breaks up into a 
series of little points, a crown that spits out little 
droplets from its tips. The rim no longer has its 
circular symmetry, but has acquired a lower grade 
of radial symmetry, like a starfi sh, in which some 
directions are distinct from others. The process 
of splashing spontaneously lowered the droplet’s 
own symmetry.

In this book we will see many more examples 
of such symmetry-breaking. A smooth layer of 

ART FORMS IN NATURE 
The ornate symmetries and striking colors 
of marine invertebrate animals such as 
tunicates (1) and echinoderms (2) were 
depicted, sometimes with a little over-
elaboration, by the German biologist 
Ernst Haeckel at the start of the twentieth 
century.

19SYMMETRY
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water breaks up into cells of top-to-bottom 
circulation when it is uniformly heated from 
below. A block of material that is shrinking in 
all directions splits into a network of cracks. 
Spiraling patterns form in a perfectly mixed 
solution of chemicals. This is how so many 
natural patterns form: as if by magic out of a 
featureless landscape. 

We can see it happen, too, on a spider’s web. 
The web itself is a gorgeous natural pattern, but 
it’s not a spontaneous one: the spider makes it 
the hard way, as we would, by stringing each 
thread in its place. However, catch the web while 
the early morning dew is still out and you’ll fi nd 
it beautifully decorated with tiny beads of water 
hung out like rows of pearls. Did the spider 
put them there? Not at all—they have been 
self-organized as dew condensed to coat the 
silk threads. A thin column of water like this is 
unstable: it will develop a waviness that pinches 
it off into little beads, each one regularly spaced 
where the peaks of the wave were.  

Symmetry offers a useful way of thinking 
about pattern and shape, b ut even apparently 
irregular, totally unsymmetrical objects can have 
a hidden order that mathematics can reveal. Take 

a pebble. How would you describe its shape? It 
is sort of round, like a sphere but not quite. A 
perfect sphere is easy to defi ne mathematically: 
it has the same amount of curvature everywhere 
on its surface. But for a pebble, the curvature 
differs slightly from place to place, and from 
pebble to pebble. There is a range of curvatures, 
and the general “pebble shape” can be described 
by a graph showing the relative amounts of 
different degrees of curvature in a selection of 
many pebbles. 

Unlike a sphere, pebbles often have some 
parts that are concave rather than convex: 
dimples, not bulges. (Potatoes have similar shapes, 
and the concave parts are the bits that are hard 
to peel.) Mathematically, these parts are said to 
have negative curvature. So the graph showing 
the distribution of curvature of a pebble reaches 
into negative as well as positive values. But for 
any collection of pebbles, the overall graphs of 
curvature have the same shape! Each individual 
shape differs, but on average there is a single 
“pebble shape” described by the curvature 
distribution. Math reveals the common forms 
underlying the apparent diversity.

“Even apparently irregular, totally unsymmetrical objects can have a 
hidden order that mathematics can reveal.”

NATURAL CURVES
The proboscis of the 
geometer moth curls 
into an elegant spiral, 
decorated with a regular 
array of tiny hairs.
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ACCIDENTAL MIMICRY
The emperor moth 
and the barn owl.
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POLLEN
We can intuit order in 
patterns, such as pollen 
grains (1) or fl owers such 
as this Enkianthus (2), 
even if they lack formal 
mathematical symmetry.

25SYMMETRY
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ELEGANT VARIATION 
ON THE RADIAL THEME 
Five jellyfi sh display the 
inventiveness of nature.
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TAKE FIVE
Fivefold symmetry is often 
favored by echinoderms such 
as starfi sh and sea urchins. 
Oddly, these evolved from 
creatures with only bilateral 
(twofold) symmetry.  
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1

4
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BILATERAL INSECTS 
It may look like an alien, but the damselfl y’s bilateral 
head (1) still gives it a weirdly humanoid feel. The 
markings of the striped shield bug (2), the metallic 
wood borer beetle (3), and the monarch butterfl y (4) 
scrupulously observe their mirror symmetry. Even the 
emergence of a body plan in the midge pupa (5) is a 
progressive elaboration of its bilateral symmetry. 
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AS LEFT, SO RIGHT
Symmetry is intricately 
preserved in the features 
and markings of the 
buckeye butterfl y (1), 
Eastern tiger swallowtail 
butterfl y (2), Indian moon 
moth (3), Southeast 
Asian atlas moth (4), and 
monarch butterfl y (5).

3
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BILATERAL SYMMETRY ACROSS 
THE ANIMAL KINGDOM
Tiger (1), peacock (2), serpent eagle 
(3), Grevy’s zebra (4), and Argentine 
horned frog (5).



1

PATTERNS IN NATURE36

BILATERAL SYMMETRY 
IN FISH Balloonfi sh (1) and 
sand diver (2).
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MARINE DESIGNS
Anemones and corals 
show a wide range of 
textures and patterns, in 
none of which is there 
an exact symmetry in a 
mathematical sense.

PATTERNS IN NATURE38





THE EDGE OF ORDER
Intricately patterned sea 
anemones.
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SPLASHES
The circular symmetry 
of the corona of ejected 
water gets broken in 
ornate ways as the rim 
breaks up into droplets.
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Why mountains look like molehills

FRACTALS
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If we look at an aerial photograph of a jagged coastline, without a scale bar we can’t 
be sure if we’re seeing a stretch that is a mile long, or ten miles, or even a hundred. 
This indistinguishable appearance at different scales of magnifi cation is a property 
called fractal. It is a remarkably common feature of nature: think of the fl uffy edge of 
a cloud, or the way a twig from a branch tip mimics the shape of the whole tree, or 
the repeated branching of the lung’s passageways. In fact, fractals have even been 
called the geometry of nature. Many natural fractals look disorderly when you fi rst 
see them: there’s no exact symmetry in a tree or a mountain profi le. But the fractal 
property discloses a kind of “hidden logic” to the pattern: there’s a hierarchical 
repetition of the same general form at decreasing scales. What are the processes that 
create this logic? And why is it useful for living organisms?

Natural patterns with a symmetrical form, like 
the bee’s honeycomb, surprise and delight 
us precisely because they are rather rare. 

Nature doesn’t often display such strict order and 
regularity. Whether it is the spindly fi ligree of a 
naked tree’s silhouette in winter or the rugged 
jumble of a mountainous skyline, what we fi nd 
in the wild seems more often to have a lot of 
unpredictability and disorder to it. 

Yet these structures have a hidden kind of 
pattern, too. The logic of the shape or form only 
becomes fully evident when we try to describe 
it mathematically, but we already intuit a sort 
of organization, even without this specialized 
knowledge. There is surely something pleasing 
and entrancing about the branching shape of a 
tree that we wouldn’t discover in a totally random 
arrangement of parts. It’s not hard to see where 
this magic ingredient lies. The shape of a tree 
is complicated, and we can’t easily describe it 
in the same way as we might describe a square 
or a hexagon. But we can give a very concise 
description if we focus instead on the process that 
produces the shape. A tree shape might be said to 
be “a trunk that keeps branching.”

This description is what scientists would call an 

algorithm—an instruction for making a structure or, 
more generally, a process that has to be carried out 
to get what you’re after. The reason why a tree’s 
shape “feels” pleasing rather than incomprehensibly 
complicated is, I would argue, that we sense the 
simplicity of the algorithm needed to make it. 

Even minor changes to the algorithm will 
produce a wide range of different treelike shapes. 
If the branching angle is small and the branches 
stay straight, we’ll end up with a poplarlike 
network. If the branching angle is wider and the 
branches can bend and twist, the result is more 
like an oak.

Looked at this way, an object that seems at 
fi rst to be geometrically very complex, compared 
to a cone or a cube, is revealed to have an 
underlying simplicity. How can we describe this 
geometry mathematically? A tree has no real 
symmetry at all in the sense explained in the 
previous chapter: you can’t rotate or refl ect it in 
any way to produce a shape that looks identical. 
We might be tempted to conclude that geometry 
has, in fact, nothing to say about this pattern.

But it does. We just need a different kind of 
geometry. It is called fractal geometry, and it has 
been said to be “the geometry of nature.”

PATTERNS IN NATURE
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1 BRANCHING 
FRACTALS 
Tree branches in Lake 
Manyara National Park, 
Tanzania.

2 FRACTAL 
COASTLINE
The complex boundaries 
of the Aegean sea.

The key to fractal geometry lies with the 
algorithmic approach to the forms it produces. 
What the “tree algorithm” is really saying is: 
keep making the same kind of structure (in this 
case, a branching junction) again and again at 
ever-smaller scales. Because of this repetition at 
different scales, a small part of a tree can resemble 
the whole thing. Break off the end of a branch 
and you have something that looks rather like 
a miniature tree. If you imagine continuing the 
branching steps without end, then you’d not really 
be able to tell, simply by looking at a fragment 
of the shape, how big it was: whether you were 
seeing the whole tree, or a yard-long branch 
segment, or a tip no longer than your thumb.

This kind of structure that repeats again and 
again at smaller scales is said to be “self-similar.” 
Fractals are always self-similar. Their structure is 
“hierarchical,” which means that it is patterned 
over a succession of different size scales: the trunk 
of a tree represents one level of the hierarchy, 

the main branches constitute the next level, 
and so on.

In some natural fractals, the self-similarity of 
the structure extends over a wide range of scales. 
A coastline may be rugged and irregular over 
distances ranging from a yard or so (a fractured 
cliff edge, say) to perhaps hundreds of miles. 
Without any points of reference to give us clues 
about the scale—such as a coastal cottage on the 
cliff edge—we might be quite unable to tell from 
an aerial photograph whether we’re looking at a 
bay a hundred yards across or the entire coastline 
of a country. It’s the same for a cloud, the wispy 
edge of which might also have a fractal shape: 
if you’re shown just a bit of it, you can’t tell how 
much of the whole it represents.

Nature can make fractals that are more orderly 
than the random crenellations of a coastline. 
Some plants branch in an almost regimented 
progression, so that each level of the hierarchy 
offers a rather precise echo of the last, reduced in 

“Looked at this way, an object that seems at fi rst to be geometrically  
very complex is revealed to have an underlying simplicity.”
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scale. In ferns, each Christmas-tree-shaped stem 
sprouts a train of sub-stems, their size diminishing 
steadily toward the tip even as they remain almost 
perfect replicas of the whole stem itself. Still more 
captivating is the fractal head of a Romanesco 
caulifl ower, its conical profi le embellished 
with smaller versions of itself over three or so 
hierarchical levels. Equally impressive in its way is 
the dragon’s blood tree of the Socotra archipelago 
in the Indian Ocean, with branches that repeatedly 
divide neatly in two.

There is a limit to the fractal branching of a 
tree, because real objects are made of a tangible 
substance that can’t become indefi nitely fi ne in 
its details. If nothing else, the wiggles and crinkles 
can’t get smaller than the atoms from which the 
thing is made. There’s also an upper limit: you 
don’t get trees as big as mountains. So all natural 
objects that have a self-similar fractal structure do 
so only over a particular range of scales. 

But some mathematical fractals sustain their 
self-similarity no matter how fi nely you look, 
because numbers can keep getting more minutely 
distinct forever. In the 1970s the mathematician 
Benoit Mandelbrot, who gave fractals their 
name, discovered an equation that can generate 
a fractal boundary in “number space,” now 

known as the Mandelbrot set. The edges of this 
blobby “snowman” shape are covered in smaller 
blobs that, when looked at closely, resemble tiny 
versions of the same basic shape, sometimes 
with fi ne, jagged fi laments extending outward. 
No matter how much you magnify the shape, 
the same weird snowman keeps showing up. 
It was a shock for mathematicians, used to the 
calm decorum of geometric shapes, to discover 
that pure numbers can spawn something this 
elaborate, poised at the border of regularity 
and chaos. 

Growing fractals
Natural fractals such as coastlines and mountain 
ranges are generated by a process of gradual 
erosion and removal of material. The opposite 
phenomenon of steady accumulation can also 
result in these capricious, unpredictable shapes. 
Take the dark, branching veins called mineral 
dendrites that can be found lacing through rocks, 
with forms so irregular and seemingly organic that 
they were once mistaken for the fossils of primitive 
plants. These are a kind of creeping crystal, 
formed when mineral-rich fl uids percolate through 
the rock and deposit their bounty of dissolved 
substances as tiny grains of insoluble salts. The 

1 LAND’S END 
Erosion carves coastlines 
into forms with details at 
many scales.

2 DIMINISHING 
FRACTAL 
Ferns show an orderly 
mirroring of form at 
several successively 
smaller levels.

3 WHORLS WITHIN 
WHORLS 
The fl orets of Romanesco 
caulifl ower are conical 
structures reproduced 
and elaborated on several 
scales.

4 FRACTAL 
NETWORKS
The vein systems of 
leaves achieve effi cient 
distribution of fl uids 
through networks of 
progressively smaller 
elements. 
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grains stick together in tenuous branches, their 
tips advancing and splitting as they go. Or take 
the fl uffy particles of soot formed when tiny blobs 
of carbonized material fl oat through the air and 
stick to one another—three-dimensional fractal 
clusters that, under the electron microscope, 
resemble solid yet wispy clouds. 

These are processes of aggregation: objects 
sticking together. What seems surprising is that 
this doesn’t just create dense clumps of material, 
but that instead the clusters sport delicate 
branches with lots of empty space in between.

Imagine a cloud of particles drifting along 
random, erratic paths through air or water, 
which will stick together the instant they touch. 
That process of aggregation will create a rather 
irregular cluster. Once a bump appears by chance, 
it will grow faster than the rest, because, purely by 
virtue of poking out from the surface, it is more 
likely to encounter another particle. The further 
out it protrudes, the more it grows. This is called 
a growth instability: there is feedback process that 
makes bumps self-amplifying. The randomness of 
the particle motions means that new bumps will 
appear on existing ones: they grow into arms that 
then branch into more arms. The branches are 
forever becoming elaborated into sub-branches. 

And as these tendrils extend outward, the 
chances of an erratically moving particle 
fi nding its way between them to fi ll in the 
gaps become ever smaller: such a meandering 
particle is bound to touch a branch and stick 
there before it can penetrate far down the fjords 
in between. So the gaps never get fi lled, and the 
aggregation process produces fl uffy, 
airy clusters.

As this example shows, fractals don’t totally 
fi ll up the space that they occupy. They extend 
through it while leaving lots of empty space: they 
are not “space-fi lling.” A tree extends through 
all directions in space, but it isn’t exactly three-
dimensional: that would correspond instead to a 
solid block of wood. Similarly, mineral dendrites 
sprawl across the surface of a rock (they often 
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grow over fracture surfaces where the rock has 
split and fl uids can seep through), but don’t 
totally cover that surface like a spreading ink 
blot. This means that fractals can be considered 
to be objects with a dimensionality that is not 
an integer: they are not three-dimensional (like 
a cube) or two-dimensional (like a square), but 
two-and-a-bit-dimensional, or one-and-a-bit. 
They exist between dimensions. The larger the 
fractal dimension, the more of the available space 
it occupies; the more densely branched it is. It is 
from this “fractional” dimensionality that fractals 
get their name. 

Fractal branches are so common in biology 
that you have to suppose they have a useful role. 
Think, for example, of the bifurcating passages 
of the lung, or the network of arteries, veins, 
and capillaries in the vascular system—both of 
them fractals with the same kind of hierarchy of 
branches that we see in trees. It’s fair to imagine 
that these branching networks convey some kind 
of adaptive benefi t.

Such a network exists to distribute vital fl uids, 
whether that is air, blood, or the sugary sap 
of a plant. It’s not hard to see that the treelike 
structure is a good way to get fl uids to all parts 
of the body or tissue, but that can’t be the whole 
answer. One big advantage of a self-similar, 
fractal network is that, since a part of the system 
mirrors the whole, the network is easy to scale 
up: the same principles will work for the vascular 
system of a pigmy shrew or an elephant, or 
for the branches of a japonica and a redwood. 
And fractal networks are especially good at 
reaching throughout the body’s volume without 
fi lling it up entirely, precisely because they are 
“between dimensions.” It also turns out that these 
branching networks are the most effi cient in terms 
of energy: their structure means that the amount 
of energy needed to transport the fl uids to all 
those points is as small as it can be. That energy 
sa ving is a huge benefi t to the organism.

FRACTAL BREAK-UP
To begin with, there’s a 
particular size scale to 
the ink drops falling into 
water. But as they mix 
with the water, the fl ow 
becomes turbulent and 
the ink takes on a fractal 
appearance, structured 
on a wide range of scales.
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FRACTALS ABOUND
The fractal branching of lungs (1) has a very 
practical function—to carry fl uid effi ciently—
whereas the branching of mineral dendrites in 
agate (2) has none. But the forms are similar 

because the growth processes doubtless 
share something in common: an instability 
that provokes ever more branching at the 
network tips.
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BRANCHING CRYSTALS 
Mineral dendrites, often mistaken 
for the fossils of ancient plants, 
can be very beautiful.
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GEOLOGICAL FRACTALS 
The forces of erosion elaborate 
the forms of coastlines and 
sculpt mountains and river 
valleys into fractal profi les: 
Mergui Archipelago, southern 
Myanmar (1), Canary Islands (2), 
and New Mexico (3).
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WINDING RIVERS
River networks are formed in a complex process of 
erosion and sedimentation, and their forms are diverse. 
But in general they are “optimal” networks, which 
dissipate the energy of the fl owing water at the fastest 
rate possible. It turns out that this often gives them a 
branching, fractal form. Columbia river, USA (1), Iceland 
(2), saltmarshes, Spain (3), and Siberia, Russia (4).
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DIVIDE BY TWO
Few living systems exhibit 
as orderly and systematic 

a fractal branching 
scheme as that of the 

dragon’s blood trees of 
Socotra Island in Yemen.



ROOTS AND BRANCHES 
The fl uid distribution 
networks of trees have 
the same form top and 
bottom, because both are 
particularly effi cient at 
transporting the vital fl uids 
throughout the space the 
tree occupies.
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MOUNTAINS OF FRACTALS 
The fractal profi les of mountains 

can take many forms—some 
taller, some fl atter, but all with 
the same repetition of shape at 

different scales.
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STEAMY SKIES
Whether they are 
wispy and ragged 
or bulbous and 
rounded, the shapes 
of clouds typically 
give us no clues 
about the scale of 
the region we are 
looking at: they 
display the fractal 
property of “scale 
invariance.”



SPREADING IT AROUND
Fluids carrying nutrients are spread across the 
surfaces of leaves by branching vein networks with 
a hierarchy of different scales. Unlike the branches 
of trees and their roots, the tips of these branches 
can intersect and join up, forming loops that provide 
alternative pathways if parts of the leaf are damaged. 
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MANDELBROT SET 
Purely mathematical fractals 
can be generated by equations 
that pick out numbers in the 
two-dimensional plane: ordinary 
(real) numbers supply one axis 
(east–west), and “imaginary 
numbers” containing the square 
root of -1 are arrayed along the 

other (north–south). Numbers 
containing both real and 
imaginary parts occupy the plane 
beyond these two axes.

Shown here are fragments of 
the so-called Mandelbrot set at 
different scales of magnifi cation. 
It is traced out by an equation 
that takes one number and 

transforms it into another, which 
is then “fed back” into the 
equation in an iterative process. 
Repeating this process again 
and again produces numbers 
that either stay fi nite or grow to 
become infi nite. The Mandelbrot 
set, shown in black, is the space 
occupied by numbers that do not 

grow to infi nity when subjected 
to this iteration. This space has 
an intricate structure that repeats 
at different scales. Coloring the 
rest of the space according to 
the rate at which the respective 
numbers grow to infi nity reveals 
yet more fractal structure, 
producing these baroque spirals.





COSMIC FRACTALS
Turbulent fl ow is a fractal 
form in which energy is 
channeled down to ever 
fi ner scales, generating 
increasingly small structures 
in the process. The resulting 
forms can be chaotic—it’s 
impossible to predict exactly 
what they will look like or 
how they will evolve over 
time—but nonetheless they 
have a mathematical fractal 
structure that represents a 
kind of “hidden order.” The 
richness of shape and form 
that results is apparent in 
these views of the turbulent 
clouds of gas and dust in the 
Orion nebula (left) and the 
Tarantula nebula (see pages 
76–77).
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The math in snails and sunfl owers

SPIRALS
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We see spirals everywhere in nature, from the sea snail’s shell to the swirling gas and stars 
of a spiral galaxy. But do they share anything in common? On the whole, they do. Most 
natural spirals have a shape called logarithmic, which means that, like fractals, a small 
part looks just like a bigger part. A snail shell grown in such a form can stay the same 
shape as it gets ever bigger. Such spirals may also appear in less obvious places; the circular 
arrangement of fl orets in the head of a sunfl ower is made up of two sets of logarithmic 
spirals rotating in opposite directions. And spiral vortices form in fl owing fl uids, from bath 
water disappearing down the plughole to cyclonic storms on Earth and Jupiter. This is one 
of nature’s universal designs.

What makes spirals so special that they 
recur at scales from tiny to cosmic? Do 
these forms really share commonalities, 

or are their parallels just coincidental? 
Many natural spirals, like that of a snail shell, 

are not just any old scrolling shape. They begin 
with graceful, almost languid curves, but become 
increasingly tightly coiled as we move in toward 
the center. This is different from the kind of spiral 
made by rolling up a garden hose. In that case, 
the width of the coils remains the same on every 
turn. This is a vital distinction.

The coiled-hose spiral is called an Archimedean 
spiral, because Archimedes described it in the 
third century BCE in his book On Spirals. When 
it appears in the physical world, that’s generally 
because it does indeed come from rolling up some 
long or fl at object with a constant width: a rope, a 
sheet of paper or a carpet, a worm. 

The snail shell, meanwhile, has a form called 
the logarithmic spiral, because one way of writing 
the mathematical equation that describes it 
involves logarithms. This spiral has a very special 
property: its shape remains the same no matter 
how small or big it is. It is another example of a 
self-similar pattern.

What does self-similarity mean here? Isn’t 
a spiral always a spiral shape anyway? Yes, it 
is—but there are distinctions. For one thing, an 
Archimedean spiral can only get so small and no 
smaller. When the radius of the coil is the same 
as its width, you’re at the limit: you can’t coil a 
rope more tightly than this. But as the logarithmic 
spiral rotates into its center, the coils go right on 

getting narrower and narrower, so the curvature 
can get tighter and tighter. You could say that 
the decreasing width keeps perfect pace with 
the greater curvature, so that the spiraling 
knows no limit. 

Another way of saying this is that the spiral 
looks the same no matter what scale you see it on. 
Zoom into the center of a snail shell and the curve 
looks just the same as it did before. In principle, 
a logarithmic spiral can go on curling inward or 
outward forever and its form would never change.

This self-similarity is just what a gastropod 
mollusk like a snail needs. As the organism grows, 
it needs a bigger shell. But the shell is made of 
hard stuff—calcium carbonate, the same mineral 
as chalk and marble. It can’t expand, and it would 
be terribly tough on the snail to be forever taking 
the shell apart to build a new one. So mollusks 
simply adds an extension, growing a larger 
house out from the rim of the previous one. 
The early part of the shell, now too narrow, is 
simply abandoned.

Such gradual widening of the rim could 
produce a cone, and that’s certainly one option 
for the creature. But to avoid carrying an ever 
lengthening burden, the cone is curled up 
compactly into a spiral, and this is more or 
less what a logarithmic spiral shell is: a sort of 
rolled-up cone. 

So the logarithmic spiral is a great design for 
a gastropod. It doesn’t “know” this, however. All 
it needs to heed is a growth rule that says “keep 
the shape of the rim the same, but increase its 
circumference at a steady rate.” To make the cone 
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curl neatly into a logarithmic spiral, just add the 
condition that the rate of growth is faster on 
one side of the rim than the other: the cone will 
then spiral automatically. This simple principle is 
suffi cient to construct a vast range of different 
shell shapes, like those seen in different species of 
marine gastropods, just by varying the perimeter 
of the mouth of the shell.

This prescription for growing logarithmic 
spirals isn’t just followed by mollusks. These 
pleasing forms are also found in the convolutions 
of animal horns, talons, and claws, although there 
the spirals sometimes might not even complete a 
single full revolution.

Spiral galaxies such as the Milky Way often 
(but not always) have a logarithmic shape, at least 
roughly. So do cyclones, tornadoes, whirlpools, 
and plughole vortices. Not all vortices in fl uids fi t 
this shape, but it is a common outcome of the way 
fl uids circulate, especially if there is a “sink” at the 
center, like a plughole that is removing the fl uid.

Why do fl uids seem so readily to coordinate 
their movements into this tightly organized path? 
The organization comes from the drag that one 
part of a moving fl uid exerts on the other parts 
nearby—the same force that creates eddies and 
wakes as a coffee spoon stirs in the cream. These 
mutual infl uences of one fl ow driving another give 
rise to feedback that can marshal small, random 
disturbances into coherent large-scale movements. 
The gigantic vortices of cyclones rotate counter-
clockwise in the Northern Hemisphere and 
clockwise in the Southern Hemisphere. The 
preference is caused by the rotation of the Earth, 

a phenomenon called the Coriolis effect. Some 
scientists have asserted that, if you take care to let 
all the initial randomness in a tank of water settle 
down, the very small infl uence of the Coriolis 
effect creates a detectable bias in a bathtub 
vortex, too. But it’s not clear if this is true—the 
experiment is very hard to do.   

The secret life of plants
Of all the patterns and forms of nature, the 
spiral has probably held the greatest appeal for 
mystics and dreamers. It is revered by adherents 
of “sacred geometry,” who consider the patterns 
and forms of nature to embody spiritual truths 
of the cosmos. Spirals are found in ancient and 
indigenous art ranging from the carvings on the 
Bronze Age stones of Newgrange in Ireland to the 
paintings of Australian Aborigines.

Nothing better exemplifi es the apparent 
mystery and profundity of the logarithmic spiral 
than its manifestation on the heads of fl owers 
such as sunfl owers and daisies. The seeds of a 
sunfl ower head are arrayed in rows that trace out 
not just a single logarithmic spiral but two entire 
sets of them, rotating in opposite directions. The 
pattern that results has profound mathematical 
beauty: crystalline precision combined with 
organic dynamism, creating shapes that seem 
almost to shift as you stare at them. The same 

“What makes spirals so special that they recur at 
scales from the tiny to the cosmic?”

1 INTO THE VORTEX
A hurricane on Earth seen 
from space.

2 MOLLUSK MATH 
A sea snail shell.

,
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double-spiral form can be seen in other plants: 
in the leafl ets of a pine cone (most easily seen by 
looking down at the base), the leaves twisting 
along the branches of a monkey-puzzle tree, 
the segments on the skin of a pineapple, and 
the fl orets of a Romanesco caulifl ower head. All 
these arrangements are examples of so-called 
phyllotaxis, which literally means “leaf motion.”  

If you count the numbers of spirals in each 
set, you fi nd that they only take certain values. 
For pine cones, these special pairings are generally 
3/5, 5/8, or 8/13. For smaller sunfl owers there 
might be 21 spirals in one direction, 34 in the 
other. For very large heads, there might be as 
many as 144 and 233. But only these pairs of 
numbers—never, say, 22 and 35. Why are some of 
these numbers favored over others?

Each of these pairs corresponds to two 
adjacent numbers in a sequence in which each 
number is the sum of the previous two. If we start 
the sequence from the smallest pairing possible 
(0 and 1), then it runs like this: 
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

Because this sequence was fi rst written down 
in 1202 by the Italian mathematician Leonardo of 
Pisa, known as Fibonacci, it is called the Fibonacci 

series. The ratio of two successive terms in the 
series gets ever closer to a constant value as the 
numbers get larger: a number called the Golden 
Mean, roughly 1.618.

No one is yet sure why the sunfl ower seeds 
adopt this arithmetical arrangement. One long-
standing idea is that it enables the fl orets or 
seeds or leaves to pack most effi ciently as they 
bud from the tip of the growing stem. In other 
words, a new bud appears only when it can fi nd 
enough space to do so. This is simply a geometric 
problem: if you want to arrange objects in an 
array spiraling out from a central source, what 
should be the angle between one object and the 
next? It turns out that the most effi cient packing, 
which gives the double-spiral Fibonacci pattern 
of phyllotaxis, is one for which this angle is about 
137.5˚—known as the Golden Angle.

That’s not the whole explanation, however. For 
one thing, how do plants “measure” where the 
next bud should go? The Fibonacci sequence and 
the packing idea describe how sunfl ower heads 
are arranged, but don’t explain how they achieve 
this arrangement. One possible explanation is 
that biochemical processes involving the growth 
hormone that triggers bud formation create what 

ACROSS THE 
UNIVERSE
Spirals occur on a vast 
range of scales in nature, 
from the cosmic to the 
microscopic. Here they 
are in a spiral galaxy 
(the Pinwheel Galaxy 
or Messier 101, in the 
constellation of Ursa 
Major) (1) and in an 
ammonite fossil (2).
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is in effect a kind of repulsive force between one 
bud and the next, so that the angle between 
them and the spiral center can’t be less than the 
Golden Angle.

An alternative theory is that the “force” that 
keeps buds a certain distance apart, marshaling 
them into the spiraling arrangements, is not 
chemical (caused by hormones) but mechanical: 
it comes from wrinkling and buckling of the soft 
tissue at the tip of the stem. At the very top of 
the stem, the “skin” is soft and fl exible, but it gets 
tougher and stiffer further down the stem. The 
way the stem grows will compress the stiffer fabric 
near the tip and make it buckle. Perhaps new buds 
will then sprout from the crests of these wrinkles. 
Calculations of what this buckling looks like show 
that the patterns may resemble either Fibonacci 
spirals—little whorls of peaks around the stem’s 
center—or concentric, symmetrical folds on each 
side of the plant in alternating directions, fi rst 
north–south, then east–west, and so on. That, 
too, is a pattern found in phyllotaxis.

The buckling model looks particularly 
appealing for explaining some of the bud 
arrangements in cacti, where the stubby, spiraling 
protrusions look more like wrinkles in hard skin. 

This concertinalike folding makes it easy for the 
soft tissues inside to swell quickly when there is 
water to absorb. Regular pleats and grooves are 
quite common on the tough outer skins of pulpy 
fruits such as pumpkins and gourds. These, too, 
may be patterns self-organized by the stresses that 
develop in the skin as the fruits grow and swell.  

Wrinkle patterns at the tips of our fi ngers can 
develop into spirallike concentric whorls. Because 
the wrinkles of fi ngerprints all have more or less 
the same width, the whorls aren’t logarithmic 
spirals, but more like the coil-of-rope Archimedean 
spiral. The buckling here seems to be caused by 
different layers of skin growing at different rates 
during early fetal development. Fingerprint whorls 
tend to be centered on the pads of your fi ngertips, 
where the curvature of the surface is greatest. 
But the details of the folds are determined rather 
randomly, and so your exact fi ngerprint pattern 
is unique. That’s so often how it is with natural 
patterns: they are endless variations on a them e.

FLORAL TWIST
Spirals, often following 
strict mathematical 
relationships, are a 
common feature of phyl-
lotaxis, the arrangement 
of plant structures such 
as leaves and petals. Here 
they can be seen in a 
Romanesco caulifl ower 
(3) and a rose (4).
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COILED UP
Logarithmic spirals such 
as this chameleon tail 
(1) and millipede body 
(2) may be formed from 
the rolling up of a gently 
tapering cone.
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SPIRAL BUCKLING 
Wrinkling can generate 
more or less orderly 
patterns, including spiral 
ones: cactus fl ower (1), 
pumpkin (2), fi ngerprint (3), 
cactus (4), and aloe (5). 
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CURVES OF LIFE 
The spiral arrangement of 
fl oret heads and seeds in 
a sunfl ower follows the 
Fibonacci sequence.
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INSIDE THE SPIRAL 
Spiral mollusk shells are logarithmic 
spirals, which enables them to 
retain the same shape as each 
successively larger chamber is 
added.
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SHELL SPIRALS 
Ammonite (1), nautilus 
(2), snail (3), conch  (4), 
and polished nautilus (5).



5

93SPIRALS



1 2

43

PATTERNS IN NATURE94

1



5

95SPIRALS

PLANT COILS
Ferns (1, 3, 4, and 5) 
and squash tendril (2).
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BOTANICAL SPIRAL 
Flowering kale (1), cedar 
pine cone (2), calla lily (3), 
fl oral bud (4), and rose (5). 
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WHICH WAY TO TURN
Hurricanes or tropical 
cyclones spiral in opposite 
directions within the 
Northern and Southern 
Hemispheres, owing to 
the planet’s own rotation.





TORNADO
Flowing fl uids often 
organize themselves into 
spiral vortices —sometimes 
to devastating effect.
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DOWN THE PLUGHOLE
Vortex fl ows range in scale from the mundane spiraling of bath 
water as it drains to the terrifying gyrations of tornadoes and 
hurricanes. As a fl uid fl ows inward toward a central core, the 
slightest deviation from perfect circular symmetry (which could 
happen at random) may be amplifi ed because of the friction 
that makes one part of the fl ow infl uence another. Gradually, 
rotation becomes organized into a single coherent vortex. This 
is an example of spontaneous symmetry-breaking: the rotation 
transforms circular symmetry into an asymmetric twist, either 
clockwise or counterclockwise.





SPIRALS

STIRRING UP THE STARS
Spiral galaxies, such as the 
Whirlpool Galaxy here, are 
not fl ow vortices but self-
organized density waves in 
a disk of stars.
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FLOW 
& CHAOS
Finding the hidden order
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FOOTSTEPS IN THE 
FLOW
As a water strider paces 
across the surface of 
water, held up by surface 
tension, it leaves an 
ornate wake behind 
it, each step dragging 
the water into pairs 
of oppositely rotating 
vortices that evolve 
with baroque elegance 
(revealed here with 
blue dye).

Rivers have always attracted artists. In China, 
poets of the Tang Dynasty sat contemplating 
them for days, while painters tried to 

capture the characteristic fl ow forms of the water 
in fl uid brush strokes, alive with the vital energy 
they called qi. They were doubtless tantalized 
by the same thing that captivated Leonardo da 
Vinci when he sketched many images of fl owing 
water in fi fteenth-century Italy—the perception 
that amid the turbulent fl ow there is a kind of 
organization, a hint of patterns forever shifting 
and disintegrating. Leonardo intuited what 
scientists now recognize: turbulent water is not 
mere chaos, but a mesmerizing mixture of order 
and disorder. Leonardo’s intricate drawings of 
fl ow testify to his powers of observation, but 
there is something a little too regular about 
them that doesn’t quite match what we see. It 
is as if Leonardo felt that, in order to grasp the 
fl ow forms, he had to edit what he saw, making 
it more tangible and familiar. His images are 
what art historian Martin Kemp called structural 

intuitions. Through such intuitions, Kemp 
suggests, we try to make sense of the world we 
perceive. They guide us toward similarities and 
correspondences in the patterns of nature.

There really is a kind of order in fl ow, but 
to see it more clearly, we need to slow the fl ow 
down. Most fl ows in nature are turbulent: they 
are so swift that all that remains of this order 
are glimpses, mesmerizing because of their very 
transience. If, however, we look at much gentler 
fl ows, the patterns are obvious—and stunning.

Think of water coursing down a long, shallow 
channel with smooth, fl at sides. If the water’s 
speed is low—if it descends a very gentle gradient, 
say—then the fl ow follows more or less straight 
paths, as you can see by placing visible objects 
within it, such as a scattering of fi ne powder or 
blobs of colored ink. The water moves in fl at, 
parallel layers, a type of fl ow called laminar.

Now imagine an obstacle in the fl ow—a 
dangling branch dips into the river, a boulder 
on the river bed pokes up through the surface. 

The universe is dynamic—always on the move. From clouds of gas and dust, 
stars coalesce. Water circulates around the ocean in great loops and gyres, 
driven by differences in temperature and saltiness; convection currents stir 
the air and summon up clouds and jet streams. Rivers fl ow down from the 
mountains in branching formations like those through which our blood 
courses. Many of these fl ows are turbulent—too fast to maintain any constant 
form or to be fully predictable—and yet that doesn’t strip them of all order. 
The fundamental forms of fl uid fl ow, such as the whirlpool vortex, are as 
familiar in coffee and cream as they are in a tropical cyclone; a storm in a cup, 
indeed. In these and other ways, patterns of fl ow surround us with mystery 
and majesty. 
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How does it disturb the smooth laminar fl ow? 
That depends on several things: the size of the 
obstacle, the viscosity of the liquid (water and 
syrup respond differently), and in particular the 
speed of the fl ow. If it is slow enough, the fl uid 
may pass gently around the obstacle and come 
together again on the far side, so that the paths 
revealed by the tracer material—the powder or 
ink—are smoothly bent to either side before 
becoming parallel again. But if the fl ow is a little 
faster, a pair of spinning eddies appears in the 
wake behind the obstacle. Faster still, and the 
wake develops a persistent wavy undulation. As 
the fl ow speed increases, these waves grow and 
acquire crests that “break” and curl over, twisting 
into a regular train of vortices that turn fi rst one 
way and then the other. 

This baroque pattern is known as a Kármán 
vortex street. The vortices spring from the sides 
of the obstacle itself, as the fl uid fl owing past is 
dragged inward by friction and begins to turn on 
itself. Vortex streets are common in the natural 
world. They can be seen in cloud formations as 
air streams past some disrupting infl uence such 
as a region of high pressure. They spring from 
the moving feet of a water strider propped up 
by surface tension on a pond surface, and they 
are shed by the fl apping wings of insects, which 

cleverly maneuver the wings so as to harvest a 
little push from the eddies to give them extra lift. 

The growth of wavy patterns in smooth 
laminar fl ow is said to be a kind of fl ow instability: 
it signals the onset of the less regular and 
more turbulent motion that will appear at still 
greater fl ow speeds. Something similar can be 
found when two layers of fl uid move past each 
other in opposite directions, or more generally, 
when they move at different speeds, so that 
one drags against the other. This situation is 
called a shear fl ow, and again it is ubiquitous 
in nature, especially in the atmospheric fl ows 
of our planet and others, such as the swirling 
gaseous atmospheres of Jupiter and Saturn. The 
wavy disturbance is self-amplifying: as soon as 
it appears, it has a tendency to grow, the waves 
deepening and sharpening. This self-amplifi cation 
is a common condition of pattern formation.

Finding order in chaos
Jupiter’s atmosphere is turbulent. Aside from 
the parallel bands called zonal jets, the fl ows 
are fast enough to wash away any truly regular 
pattern, and the shapes and forms of the vortices 
are constantly changing and shifting. Yet the 
fl ow doesn’t look simply random: there is a kind 
of elegant beauty to it, punctuated as it is with 

1 JUPITER’S GREAT 
RED SPOT 
This storm, which is 
bigger than the Earth, 
has lasted for centuries 
and hints at the regularity 
that can emerge from 
chaotic fl ow. This image 
was taken by the 
Voyager 2 spacecraft 
from a distance of 
 about 4 million miles 
(6 million kilometers).

2 and 3 STUDIES OF 
FLOWING WATER 
Leonardo da Vinci’s 
sketches of fl owing water 
came from many hours of 
careful observation, and 
show the artist’s deter-
mination to discover the 
“essential forms” behind 
the superfi cial appearance 
of disorder.
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pockets of organized motion. The famous Great 
Red Spot is the most prominent: an enormous 
storm with winds of up to 350 miles an hour, 
which has been raging for at least two centuries, 
possibly several more. Smaller vortices come 
and go, some lasting decades before they are 
dissipated or swallowed.

That’s just how it is with turbulence: it might 
not have a pattern in the usual sense but, like 
the branches of a tree or the ever-diminishing 
echoes of a fractal, it seems to hint at some deep 
structure beyond bewildering chaos. Can we make 
this impression more precise? Can we describe the 
shapes of turbulence?

Scientists have studied turbulent fl ow for 
hundreds of years, and yet still they cannot claim 
to fully understand it. It’s one thing to have the 
right equations that describe the motion, but 
quite another to solve them. The basic challenge 
of fl uid fl ow, especially with turbulence, is that 
everything seems to affect everything else. This 
acute sensitivity of the fl ow to every tiny nuance 
makes the situation chaotic: it becomes impossible 

to predict, by looking at the fl ow pattern at one 
point in time, how it will look at a later stage. 

Given this unpredictability, can we hope to say 
anything at all about the “shape of turbulence”? 
Yes, we can. Even if we can’t predict exactly what 
a particular fl ow will look like, we might say 
something about its average properties. 

One of the fi rst people to make headway 
with this question was Lewis Fry Richardson, the 
mathematician who fi rst discerned the general 
concept of what we now call fractal structure. 
Richardson was interested in turbulent fl ow partly 
because he was working on weather prediction, 
and he suggested that it might be imagined as 
a “cascade” in which the energy of the moving 
fl uid is passed down from large eddies to ever 
smaller ones, until fi nally it gets dissipated as heat 
in the random motions of the fl uid molecules. It 
was later shown that this energy cascade obeys 
a mathematical law in which the amount of 
energy bound up in eddies of a particular size is 
related to that size via a rather simple equation. 
As with fractals themselves, this mathematical law 

2 ICE FLOES IN 
SIBERIA, RUSSIA 
The complex evolution 
of these fl ow structures, 
arising from a delicate 
interplay of erosion, 
freezing, thawing, and 
geology, is picked out by 
a crust of ice.

1 ALTOCUMULUS 
CLOUDS 
In a “mackerel sky,” the 
clouds are arranged by 
patterns of atmospheric 
convection into more or 
less regular waves 
or stripes.
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encodes a kind of “hidden regularity” among the 
apparent disorder—a cryptic pattern, if you like. 
The basic idea seems sound, although there are 
still debates about, for example, how quickly (if 
at all) a turbulent fl ow can be restored to a more 
orderly state, or whether there is more than one 
type of turbulence.  

Turning over
The Earth’s atmosphere is never still. Air is always 
on the move somewhere as winds bear it from 
regions of high to low pressure. But the cause 
of this fl ow is, at root, not so much variations in 
pressure as in temperature. Close to the surface, 
heat radiating from the land or sea warms the 
air, and as it heats up it expands and becomes 
less dense. This gives it buoyancy, and it rises. 
Higher in the atmosphere it cools again, becomes 
more dense, and sinks. This rising of warm, less 
dense air and sinking of cool, denser air is called 
convection. It doesn’t happen at random, but 
is organized into three vast conveyors in each 
hemisphere—belts parallel to the equator in 

which air rises along one edge and sinks along the 
other. They carry heat and moisture with them, 
governing the climate regimes of the planet. 

Convective fl ow often adopts states of 
patterned self-organization. Imagine a shallow 
layer of water heated in a pan. The warm liquid on 
the bottom is buoyant and “wants” to rise—but 
how is it to get past the denser liquid above? The 
answer is that there is spontaneous symmetry-
breaking: the uniform layers of liquid break up 
into circulating cells of more or less regular shapes, 
with the warm liquid rising in some parts and 
cooler liquid sinking in others. Some of these 
patterns can become astonishingly well ordered. In 
the atmosphere, their shapes can impose order on 
the clouds, creating the parallel stripes of “cloud 
streets,” sometimes called a mackerel sky because 
of its resemblance to the striped markings of those 
fi sh. Even the ferocious convection on the Sun 
doesn’t just result in disarray. The Sun’s surface is 
covered with so-called “solar-granules,“ patches 
that are darker at the edges than in the middle, 
and which change and shift every few minutes. 

3 SUNSPOT
Even the seething surface 
of the Sun is patterned. 
Convection in the hot 
plasma creates this 
“granulated” structure of 
bright spots in a web of 
slightly dimmer (cooler) 
regions. The black 
structure in the center is 
a sunspot, which is even 
cooler still.



Flocking and swarming
As dusk dims the fall sky, starlings gather and fl ock in search of a 
place to roost. They are looking for woodlands, buildings, piers, 
and reed beds where they can fi nd shelter from harsh weather and 
predators. The fl ock might swell to many thousands—even hundreds 
of thousands—of birds, and as it grows it displays one of the most 
astonishing sights in nature. Twisting and turning, shifting from near 
transparent to opaque as the angles of the birds’ bodies change in 
our line of sight, the fl ock becomes a so-called “murmuration” in 
which these creatures seem to have acquired a group mind as they 
maneuver in unison.

How do they do it? All it takes is for each bird to observe some 
rather simple rules of motion. They avoid crashing into each other or 
getting too close. They try to match their direction of movement to 
the average direction of their neighbors. And they try not to drift too 
far apart. A bird in one part of the fl ock has not the slightest idea of 
what others far away are doing; it is merely attentive to those close by. 

The same sort of behavior can be seen in schooling fi sh and 
swarming locusts or bats. The coherent movements are very effective 
at communicating information fast: waves can ripple quickly through 
the crowd, so that the alarm signs of an approaching predator are 
rapidly sent to fi sh far from the danger spot.

PATTERNS IN NATURE

Convection can create order in frigid 
conditions, too. In the remote frozen wastes of 
Alaska and Scandinavia, you might come across 
stones seemingly arranged into patterns on the 
tundra by frost giants—ring-shaped mounds 
as tall as a person is high, or great pebbles 
disported in rows and stripe formations as though 
shepherded by a massive rake. Needless to say, no 
intelligent beings have carried out such a pointless 
feat of landscaping. The stones have been heaved 
into place by convection currents in water that 
freezes and thaws cyclically just beneath the 
ground surface.

River’s edge
Fluid fl ow can become not just a patterned 
phenomenon but a patterning agent itself: the 
shapes and forms of the water leave permanent 
traces. Streams, rivers, and oceans pick up sand, 
silt, and stones and shift them in the current, and 
the resulting processes of erosion and deposition 
rearrange the landscape into patterns that are as 
pleasing as they are surprising. The meanders of a 
river are one of the best-known examples of how 
feedback processes create order and structure. 
Because the water fl ows faster on the outside 
edge of a meander, and slower on the inside, the 
river bank becomes more eroded on the outer 
bend while silt gets deposited on the inside. This 
means that bends, once they appear, bulge ever 
outward as though a bubble is being blown in the 
river’s course. Eventually the two sides of the loop 
meet and coalesce, and the bulge is pinched off 
into an ox-bow lake. 

If sediment erosion and deposition are 
particularly strong, this restructuring creates 
a much more complex river form than a lone, 
meandering thread. Channels branch off, 
intersect, and reconnect, and the water’s course 
becomes a delicate, many-stranded braid in 
which there is a constant dialog between fl ow 
and stasis, between water and earth. We can see 
these patterns in the tapestry of shallow water 
running across the sand into the sea. The slightest 
impediment of pebble or shell sets up chevron-
like shapes that overlap and interfere. One way or 
another, the river reaches the sea, fl owing to the 
pattern of its own inexorable and beautiful logic. 
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TWISTS AND TURNS 
The meandering of a 
river—here the Great Egg 
Harbor river in Delaware 
Bay, USA—is a result of 
the combined processes 
of erosion and sediment 
deposition. 
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BREAKING THE FLOW
The wake of a fl oating 
leaf borne along with the 
fl ow of a river illustrates 
the regularity of this fl ow 
form, which echoes that 
of the leaf itself. 
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NEGOTIATING KNOTS
The grain patterns in 
wood around “obstacles” 
such as knots and new 
branches look strangely 
like the “streamlines” 
used to depict fl uid fl ows.
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MOVING TOGETHER
Flocking birds, such as 
these starlings, show a 
complex and mesmerizing 
coherence.



119FLOW AND CHAOS





LOCUSTS, 
MADAGASCAR
Some swarming 
creatures, such as these 
migratory locusts, don’t 
display quite such tightly 
orchestrated patterns 
as fi sh or birds, but 
nevertheless have a high 
degree of order in the 
direction and spacing of 
individuals that prevents 
collisions in the densely 
packed throng.
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STRENGTH IN NUMBERS 
Schooling fi sh form highly 

organized patterns of motion, 
including donut-shaped, 

circulating tori. 
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AIRFLOW TRAILS REVEALED BY CLOUDS
These organized vortices form in the air above the ocean (as traced by clouds) when 
winds are disturbed by obstacles such as islands protruding from the water’s surface. 

Here, the fl ow patterns include mushroom-shaped “dipole” vortices and a tight 
succession of vortices alternating in direction, called a Kármán vortex street. Note that 

these fl ow structures can also form without the clouds, but they will not then be visible.
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BENDING LAWS 
There’s a subtle logic to the forms of river 
meanders, which dictates that as the river 

channel gets narrower, the bends get tighter 
and their “wavelength” decreases. In other 
words, the ratio of river width to meander 
wavelength stays more or less the same. 

Republic of Congo (1); the Netherlands (2).
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2 POLLUTION IN THE 
BAY BARATARIA, 
GULF OF MEXICO 
It could almost be 
the swirling, banded 
atmosphere of Jupiter. 
But no, this is oil fl oating 
on water—hinting at the 
universality of fl ow forms 
at many different scales.

4 RUFFLED SKY 
Here, the cloud patterns 
are less stripelike than 
in a classic mackerel sky, 
but still evidently have a 
characteristic “size.”

1 ICY WATER, 
HIMALAYAS 
Fast-fl owing water is fully 
turbulent. What order can 
survive in such seeming 
chaos? To fi nd it, we have 
to look deep into the 
mathematics of fl uid fl ow.

3 CIRROCUMULUS 
CLOUD
Regular stripelike features 
in this type of cloud are 
caused by patterns of 
convective fl ow in the 
atmosphere.

5 BRAIDED RIVER, 
ALASKA 
The structures of a 
braided river, in which 
extensive deposition 
of sediment creates 
a complex skein of 
overlapping channels, 
are reminiscent of hair 
or silk entrained in 
fl owing water.
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RIPPLES AT THE 
BORDER 
When one stream of 
a fl uid—air or water, 
say—passes past another 
at a different speed, the 
interface between the 
two can develop a wavy 
shape. The different fl ow 
speeds create a difference 
in pressure across the 
boundary, which can 
amplify any random ripple 
into a more pronounced 
wave. Eventually this 
wave can peak, crest, 
and break into a series 
of curlicue vortices, as 
seen here traced out by 
clouds in the atmosphere 
(1 and 2) and in computer 
simulations of fl ow (3 
and 4). The emergence 
of these wavy patterns is 
called a Kelvin-Helmholtz 
instability, after the two 
scientists who explained it.
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THE POWER OF WAVES 
High-speed photographs of 
breaking waves capture the 
extraordinary elegance and 
coherence of the fl ow—
a degree of organization 
normally all but invisible 
to the naked eye, but the 
kind of “deep order” that 
Leonardo da Vinci sought 
to intuit and illustrate.
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SAND DUNES, BRAZIL 
The wavy forms of 
these dunes in Lencois 
Maranhenses National 
Park in Brazil are 
highlighted by captured 
pools of water. Here 
again there is a preferred 
length scale in the 
self-organized patterns, 
corresponding to the 
wavelength of the 
undulations.
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SAND PATTERNS 
The range of patterns 
that can stem from sand 
grains being eroded, 
carried, and rearranged 
by fl owing water is 
immense. Some are 
braided, some branched 
or ridged, or shaped 
like fanning chevrons. 
They depend on many 
factors—the speed and 
depth of the fl ow, say, 
or the cohesion of the 
sand grains, or how 
readily the slopes tumble 
in little avalanches.
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STONE CIRCLES
So-called “patterned 
ground,” like the rings 
of stones seen here in 
the Norwegian tundra, 
is created by convection 
currents in the water 
that freezes and thaws 
underground over the 
seasonal cycle. Because 
water has the peculiar 
property of being denser 
a few degrees above 
freezing point than just 
before it freezes, water 
that thaws and warms 
close to the surface 
becomes denser than 
the almost-frozen water 
below, and it sinks. This 
produces convective 
circulation, which 
becomes organized into 
more or less regular 
“cells.” Stones in the 
ground are corralled by 
the circulation into sub-
surface clusters such as 
clumps or rings, which 
may then be brought 
to the surface by the 
well-known process of 
“frost heaving,” familiar 
to farmers (since it 
scatters their fi elds with 
stones), when the ground 
freezes. Sometimes the 
convection patterns 
produce stripes of stones 
rather than these rings.



5 WAVES 
& DUNES
How to make a chemical clock
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T he slime mold Dictyostelium discoideum
leads an undistinguished life. It lives in 
soil and rotting leaves, where it feeds on 

bacteria. It exists as single-celled organisms visible 
only under a microscope: fi fty of them head to 
toe would stretch for just a millimeter. But if these 
primitive cells fi nd themselves short of nutrients, 
heat, or moisture, they do a remarkable thing. 
They become artists.

That’s a bit of a fanciful way to put it, 
perhaps—but there’s no denying that the patterns 
formed by Dictyostelium cells under stress are 
beautiful. The colony organizes itself into ranks: 
lines of cells densely clustered, separated by 
more sparsely populated gaps. These ranks aren’t 
straight, but are curved into delicate spiral forms. 
As the cells march forth in regular array, the spirals 
spread outward like rippling waves, turning as 
they do so. Where two spiral waves meet, they 
destroy one another. The result is mesmerizing.

This behavior can be regarded as the cells’ 
attempt to dance their way out of danger. The 
wave patterns are just the fi rst stage in a process 

in which cells gradually crawl toward one another 
and clump together in a mound resembling a tiny 
slug. This mass of perhaps a hundred thousand 
cells starts to act like a single organism, wriggling 
its slimy way in search of water or warmth. Once 
it fi nds a better environment, it forms into a 
fi nger that stands upright, at the tip of which a 
bulbous, fruitlike shape balloons out that contains 
hardy spores in suspended animation, ready to 
germinate into new cells.

As survival mechanisms go, it’s impressive and 
inventive. But how do the cells manage such a 
collaborative feat? They do it by communicating 
chemically. Under stress, they start to emit a 
chemical compound that attracts other cells 
nearby, much as some animals emit pheromones 
to attract mates. But crucially, this chemical 
attractant is released in regular pulses, and it’s this 
rhythmic emission that creates the waves among 
the slime-mold population.

If that steady pulse reminds you of a 
heartbeat, so it should. With its coordinated 
waves of activity, the Dictyostelium colony is 

In a real sense, all of nature is waves. Light and sound are undulations, the 
oceans and the atmosphere support oscillations, and pulses of activity quicken 
the heart and the brain. Quantum physics tells us that the smallest particles 
of matter may act like waves in the right circumstances. The wave is a pattern 
in time as well as space: it is a constant pulse, a periodic coming and going. 
When one wave meets another, their interference can create spectacular 
new patterns. But perhaps most astonishing of all are waves that organize 
themselves from sheer disorder or from seemingly inexorable, one-way 
processes: from the chemical reactions between molecules moving at random, 
say, or the collisions of wind-blown sand. In such cases, waves can imprint 
themselves on matter with a fl amboyant ebullience.
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1 CELLULAR SCROLLS
The soil-dwelling slime 
mold Dictyostelium 
discoideum will, when 
stressed by lack of water 
or nutrients, aggregate 
into clumps of cells. 
This occurs as the cells 
emit regular pulses of 
a chemical attractant, 
which makes the colony 
organize itself into 
concentric and spiral 
wave forms like these.

2 and 3
CHLADNI FIGURES
Waves are at the root 
of the patterns called 
Chladni fi gures, made 
by vibrating a fl at plate 
onto which fi ne grains are 
scattered—for example, 
using sound waves. 
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behaving like the cardiac cells of the heart, which 
generate regular pulses of electrical activity that 
enable the muscles to contract with a steady beat, 
pumping blood. The comparison is deeper than 
you might imagine, for the electrical waves of the 
heart can also take on a spiral formation. If they 
do, however, it’s bad news: this particular pattern 
of “heart-wave” activity signals the onset of rapid 
pulses, faster than the normal heartbeat, that 
may then break down into quite random, shallow 
muscular spasms, producing the life-threatening 
condition called atrial fi brillation. Spiral waves in 
Dictyostelium are a survival stategy; in the heart 
they can be fatal. 

Waves permeate all of nature—quite literally. 
Sound waves are vibrations of the air, while light 
is a wave of oscillating electrical and magnetic 
fi elds, supporting one another as they advance 
through space faster than anything else. 
When they encounter one another, waves may 
“interfere.” Depending on whether they are in 
or out of step, their peaks and troughs might 
reinforce one another or cancel out, and the 
resulting interference patterns can be beautiful, 
as when water waves bounce off the edges of 
walls, bathtubs, and river banks. Interference of 
light waves gives rise to spectacular colors, like 
those of soap fi lms or oil fi lms on the surface of a 
wet road. When waves are confi ned within a fi xed 
space, like sound waves in an organ pipe, certain 
frequencies and patterns may be picked out in 
the phenomenon of resonance. The eighteenth-
century scientist and musician Ernst Chladni 
discovered that resonances in a metal plate, when 
it is vibrated by drawing a violin bow across one 
edge, can usher fi ne grains scattered on the 
surface into ornate patterns that follow the nodes, 
where there is no up and down vibration.

Chemical clocks
But the waves of Dictyostelium and the heart are 
different from these. They are not vibrations in any 
real sense: nothing is “shaking” the slime mold or 
the heart tissue. The waves are self-organized: they 
spring right out of the medium that carries them. 
It’s as if a cup of coffee suddenly separated out 
into rotating spirals of cream in the dark liquid.  

If it seems unlikely to you that such things 
could happen, your intuition would be justifi ed—
but wrong. That’s exactly how chemists felt when, 
in the 1950s, spontaneous wave formation was 
discovered by a Soviet chemist in a mixture of 
apparently innocuous ingredients. Their discoverer, 
Boris Belousov, was accused of incompetence, 
because what he had found didn’t seem possible: 
a chemical reaction that seemed to proceed 
spontaneously fi rst in one direction, then in the 
opposite direction. In other words, it oscillated, 
as if time were swinging back and forth. In the 
1960s a young Russian biochemist named Anatoly 
Zhabotinsky made some changes to Belousov’s 
recipe that switched the mixture, more strikingly, 
between red and blue. There was no denying it 
now: the reaction really did oscillate back and 
forth. This mixture has become known as the 
Belousov-Zhabotinsky (BZ) reaction.

The oscillations don’t last forever. Left in 
a beaker, the reaction will, after a long time, 
eventually settle down into a single state and stay 
there. But you can keep the color changes going 
indefi nitely if you keep feeding the mixture with 
fresh ingredients and fl ushing away the ones that 
have reacted—in other words, if you keep up an 
input of matter and energy, which can stop the 
reaction from reaching its fi nal or “equilibrium” 
state. The oscillations are a non-equilibrium 
phenomenon. This is a common feature of many 

1 BRANCHING OUT
The cells of slime molds 
often gather together 
into a mass called a 
plasmodium, which 
can take on complex 
shapes because of the 
chemical signals that the 
cells exchange. This is a 
plasmodium of the mold 
Fuligo septica, sometimes 
called scrambled egg 
slime.

2 LIESEGANG ROCKS
These patterns are 
not lichen growing 
on the rocks, but are 
part of the rock itself. 
They are created by a 
wavelike crystallization 
process when the rock is 
formed—notice how the 
wave fronts annihilate 
one another when they 
intersect. These structures 
are called Liesegang rings, 
after the German scientist 
who fi rst identifi ed the 
pulsating precipitation 
phenomenon.



CORRUGATED 
DESERTS 
Wind arranges sand 
grains into regular 
structures such as 
these parallel ripples. 
They are self-organized 
patterns arising from the 
amplifi cation of small 
random bumps
—a process that can 
only proceed when 
one bump is a certain 
minimum distance from 
the preceding one. As a 
result, the ripples have 
a preferred wavelength, 
picked out by the 
particulars of the wind 
speed and the average 
grain size. 
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“Waves permeate all of nature—quite literally.”

of the pattern-forming processes in nature: they 
are far from their equilibrium state, kept there 
by a constant infl ux of energy. The perpetual 
repetitive circulating motions of the oceans, for 
example, are driven by the heat of the sun. 

In 1910, an Austrian-American ecologist 
named Alfred Lotka described a theory of 
oscillating chemical reactions in which he showed 
that a combination of particular reactions 
between the different ingredients can lead to a 
seesawing alternation between different states. 
In one state one ingredient is present at a high 
concentration, so the mixture might be one 
color; in the other state a different reagent might 
dominate, producing a different color. 

Lotka wasn’t, in fact, particularly interested 
in chemistry. As an ecologist he was trying to 
understand animal populations—he was just 
using chemical reactions as an analogy. Imagine a 
population of rabbits preyed on by a population 
of foxes. Rabbits are noted for their ability to 
replicate, and the more of them there are, the 
more they breed. This can lead to a population 
explosion. If rabbits were molecules, they would 
be called auto-catalysts. A catalyst is a molecule 
that speeds up the rate at which a reaction 
happens: an auto-catalyst is one that speeds up 
the rate of its own production. Auto-catalysis 
is a positive feedback process: it can produce 
a runaway effect, blowing up out of control. 
Unchecked, the rabbit population will grow until 
it has consumed all the food (grass), and then it 
crashes to extinction.

But the foxes keep this runaway process in 

check. The more rabbits there are, the more the 
foxes thrive by eating them. It’s a delicate balance. 
If the foxes are too ravenous, they will eat all the 
rabbits; then they will starve.

Alternatively, the ecosystem might develop an 
oscillating state. The foxes eat so many rabbits 
that there’s little prey left, and the fox population 
declines. This gives some respite to the remaining 
rabbits, and their population grows. That creates 
an abundance of prey for the surviving foxes, and 
their numbers grow until they have overwhelmed 
the rabbits and they go into decline again through 
lack of food… and so on. At one point in the 
cycle, there are plenty of rabbits but few foxes; at 
another point, the reverse is true.

This was basically the scheme devised by 
Lotka, although he expressed it in terms of 
chemicals that are auto-catalytic or react with and 
“consume” other chemicals. Several decades later 
it was pointed out that in a chemical mixture in 
which the ingredients aren’t perfectly mixed so 
that their concentration is the same everywhere, 
the oscillations depend on two things: how fast 
the molecules react (which consumes them) and 
how fast they move by random diffusion from 
place to place (which replenishes the ingredients). 
Because of the two competing processes, these 
are called reaction-diffusion systems.

Ripples in nature
The clock like switching between a red-fi lled 
and blue-fi lled fl ask is pretty to behold, but the 
process is capable of more than this. If you mix 
the components of the BZ reaction, pour them 
into a fl at dish, and leave them to do their thing, 
you see something considerably more spectacular 
than a uniform color change. Instead, the switch 
to a new color starts at a few specifi c spots in 
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1 CHEMICAL WAVES
A mixture of chemical 
ingredients called the 
Belousov-Zhabotinsky 
reaction undergoes 
oscillations, fi rst 
producing products of 
one color (red) and then 
another (blue) as time 
ticks by (see above). If the 
reaction is left to proceed 
in an unstirred, fl at dish, 
the oscillations create 
waves that emanate 
from some central point, 
making these concentric 
target and spiral 
patterns. The wave fronts 
annihilate each other 
when they touch.
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the liquid and spreads out from there, producing 
circular patches. In the wake of this spreading 
wave, the mixture starts to revert to the other 
color. But then a new wave springs from the 
same spot in the next cycle of the oscillation. The 
process repeats again and again with a regular 
pulse, producing concentric circular waves of color 
that grow like ripples on a pond where a stone 
has fallen in. These are chemical waves, driven by 
the competition of reaction and diffusion.

Patterns produced by chemical waves are 
seen in a wide range of different chemical 
systems. They are formed on the surfaces of 
metals that catalyze the reactions between gas 
molecules sticking to the metal; here the patterns 
are generally microscopically small. And if the 
concentric bands remind you of the patterns 
found in minerals such as onyx and agate, that 
seems to be no coincidence. These bands are 

formed by the crystallization of different mineral 
types when the stones grow from warm, salt-
laden fl uids in the Earth’s crust as the fl uids cool. 
It seems that this crystallization process happens 
in waves that are much like the chemical waves of 
the BZ reaction, only in this case frozen in place 
for millennia. 

The target and spiral patterns of the BZ 
reaction look just like those made by Dictyostelium 
discoideum as the slime-mold cells search 
each other out to form their life-preserving 
“mushroom.” Both are chemical reactions of a 
kind, but very different: in one case there’s just 
a soup of simple ingredients, in the other there 
are swimming cells that are emitting pulses of 
chemical attractant. And as we saw earlier, the 
surges in these systems also look like the waves 
of electrical activity that pass through heart 
muscle to trigger the rhythmic contractions of the 



2

2 SHELL PATTERNS
The shells of some bivalves 
may develop microscopic 
spiral and target patterns 
engraved on the growing 
biomineral surface, which 
look very similar to those 
produced by chemical 
waves in the Belousov-
Zhabotinsky reaction. 
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heartbeat. How come the patterns are so similar in 
such diverse systems?

That’s because in all cases the basics are 
the same, irrespective of the details. The whole 
“fabric” of these systems—the solution of 
chemicals, the colony of cells, the heart tissue—is 
capable of switching between two different states, 
and that switching involves feedback processes 
and auto-catalysis. It’s even the same for the foxes 
and rabbits: if, say, the initial rabbit population 
varies slightly in number from one place to 
another in the landscape, at random, then patches 
where the population is denser might become 
the source of waves of population growth that 
radiate outward—followed close after by waves 
of glutted foxes. 

Reaction-diffusion processes can explain the 
wavy pigment patterns formed on the shells of 
mollusks such as shellfi sh and snails (invisibly small 

spirals may also appear among the microsopic terraces 
of the shell mineral itself). The positive feedback that 
produces such pattern features also seems to be at work 
in the formation of dunes and ripples in wind-blown 
desert sand. Dunes can take on many forms: the parallel 
ranks of longitudinal dunes; seif dunes that undulate like 
snakes; isolated crescent-shaped mounds called barchan 
dunes; and star dunes, with several arms radiating from 
a central peak rather like a starfi sh. Dunes have been 
seen on Mars, which also has vast sandy deserts stirred 
by winds—but the different planetary conditions may 
produce patterns found nowhere on Earth. There are 
even dunes on Saturn’s moon Titan, with grains made 
not of sand but of frozen hydrocarbon compounds, a 
bit like wax, perhaps coated with ice. They are a striking 
reminder that self-organized pattern formation is a 
feature of the cosmos: the details may change but the 
basic processes stay the same. It’s for this reason that no 
world is likely to be tot ally alien to us.
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RIPPLING PATTERNS
Ridges in wind-blown sand and pigmentation patterns 
on mollusk shells are both a kind of frozen wave. The 
sand ripples are in fact still slowly changing, as fresh 
sand is deposited by the wind. The regular spacing 
is dictated by interactions between each ripple. The 
shell patterns are produced by waves of pigmentation 
moving along the rim of the shell as it is formed, 
in a process thought to bear some similarities to 
the way chemical waves arise in the Belousov-
Zhabotinsky reaction.
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WAVES OF PIGMENTATION
As mollusk shells grow, pigmented material is 
sometimes laid down along the rim. If there are periodic 
bursts of pigmented and unpigmented growth, the 
result is banding perpendicular to the axis of the conical 
shell. If pigmentation happens at fi xed spots around 
the rim, the result is stripes parallel to this axis. And if 
the pigmentation occurs as waves that progress steadily 
around the rim, it produces slanting stripes. All of these 
are akin to the way chemical-wave patterns form.



ROCK PATTERNS
In some minerals, such as the agates shown 
here, waves of crystallization as the mineral is 
formed produce a frozen record of the so-called 
“reaction-diffusion” process underlying it.  
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DESERT’S TEETH 
These irregular, wavy 
dunes in the Namib 
desert of Namibia are 
among the highest in the 
world, reaching up to 
984 feet (300 meters). 
The bluish region is a 
dried-up river bed, with 
white encrustations of 
salt. A road is just about 
visible as a narrow light-
blue line running through 
its center.  
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BACTERIAL ART
Chemical communication 
between bacterial cells 
can make the colony 
grow into complex 
shapes, such as these 
intricately branched 
structures. Occasionally a 
random genetic mutation 
in the colony might 
convey an advantage that 
suddenly switches the 
shape of growth, as the 
mutant proliferates faster 
than the others. 
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DUNES ON MARS
Winds blow across the 
sandy deserts of Mars, 
and form dunes and other 
patterns just as they do 
on Earth. Some of these 
echo the dune shapes 
seen on Earth, such as the 
crescent-shaped barchan 
dunes (1), but others have 
shapes not found on our 
planet. That’s because 
there are different 
conditions on Mars that 
affect the way grains are 
transported and how they 
bounce: the gravity is 
weaker, the atmosphere 
is thinner, and the winds 
can be much faster.



BUBBLES 
 & FOAM
Why bees know best and 
why froth inspires architects

6





How do bees do it? The honeycombs in 
which they store their amber nectar and 
nurture their larvae are marvels of precision 

engineering, an array of prism-shaped cells with a 
perfectly hexagonal cross-section. The wax walls 
are made with a very precise thickness, the cells 
are gently tilted from the horizontal to prevent the 
viscous honey from running out, and the entire 
comb is aligned with the Earth’s magnetic fi eld. 
Yet this structure is made without any blueprint or 
foresight, by many bees working simultaneously 
and somehow coordinating their efforts to avoid 
mismatched cells.

The ancient Greek philosopher Pappus 
of Alexandria thought that the bees must 
be endowed with “a certain geometrical 
forethought.” And who could have given them 
this wisdom, but God? According to William 
Kirby in 1852, bees are “Heaven-instructed 
mathematicians.” Charles Darwin wasn’t 
so sure, and he conducted experiments to 
establish whether bees are able to build perfect 
honeycombs using nothing but evolved and 
inherited instincts, as his theory of evolution 
would imply. 

Why hexagons, though? It’s a simple matter 
of geometry. If you want to pack together cells 
that are identical in shape and size so that they 
fi ll all of a fl at plane, only three regular shapes 
(with all sides and angles identical) will work: 
equilateral triangles, squares, and hexagons. Of 
these, hexagonal cells require the least total length 
of wall, compared with triangles or squares of 
the same area. So it makes sense that bees would 

choose hexagons, since making wax costs them 
energy, and they will want to use up as little as 
possible—just as builders might want to save on 
the cost of bricks. This was understood in the 
eighteenth century, and Darwin declared that the 
hexagonal honeycomb is “absolutely perfect in 
economizing labor and wax.”

Darwin thought that natural selection had 
endowed bees with instincts for making these wax 
chambers, which had the advantage of requiring 
less energy and time than those with other 
shapes. But even though bees do seem to possess 
specialized abilities to measure angles and wall 
thickness, not everyone agrees about how much 
they have to rely on them. That’s because making 
hexagonal arrays of cells is something that nature 
does anyway.

Releasing the tension
If you blow a layer of bubbles on the surface of 
water—a so-called “bubble raft”—the bubbles 
become hexagonal, or almost so. You’ll never fi nd 
a raft of square bubbles: if four bubble walls come 
together, they instantly rearrange into three-wall 
junctions with more or less equal angles of 120˚ 
between them, like the center of the Mercedes-
Benz symbol.

Evidently there are no agents shaping these 
rafts as bees do with their combs. All that’s 
guiding the pattern are the laws of physics. Those 
laws evidently have defi nite preferences, such as 
the bias toward three-way junctions of bubble 
walls. The same is true of more complicated 
foams. If you pile up bubbles in three dimensions 

“To the natural philosopher there is no natural object unimportant or trifl ing,” 
wrote the English scientist John Herschel in 1830. “A soap bubble…an 
apple…a pebble. He walks in the midst of wonders.” Soap bubbles might 
indeed seem like trifl ing child’s play, but some of the fi nest minds in science 
have been captured by their charm and beauty, as well as perplexed by their 
shapes. Soap fi lms and foams observe a particular economy, a precise balance 
of shaping agencies that stretches and pushes them into graceful curves and 
frameworks. Nature sometimes makes ingenious use of these patterns to build 
architectures that are both useful and extravagant.

HEXAGONAL NEST 
CELLS 
A wasp (Vespula vulgaris) 
working on its nest. Why 
and how does it make the 
cells hexagonal?
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by blowing through a straw into a bowl of soapy 
water you’ll see that when bubble walls meet at 
a vertex, it’s always a four-way union with angles 
between the intersecting fi lms roughly equal to 
about 109˚—an angle related to the four-faceted 
geometric tetrahedron.

What determines these rules of soap-fi lm 
junctions and bubble shapes? Nature is even more 
concerned about economy than the bees are. 
Bubbles and soap fi lms are made of water (with a 
skin of soap molecules) and surface tension pulls 
at the liquid surface to give it as small an area as 
possible. That’s why raindrops are spherical (more 
or less) as they fall: a sphere has less surface area 
than any other shape with the same volume. On 
a waxy leaf, droplets of water retract into little 
beads for the same reason.

This surface tension explains the patterns of 
bubble rafts and foams. The foam will seek to 
fi nd the structure that has the lowest total surface 
tension, which means the least area of soap-fi lm 
wall. But the confi guration of bubble walls also 
has to be mechanically stable: the tugs in different 
directions at a junction have to balance perfectly, 
just as the forces must be balanced in the walls 
of a cathedral if the building is going to stand up. 
The three-way junction in a bubble raft, and the 
four-way junctions in foam, are the confi gurations 
that achieve this balance.

But those who think (as some do) that the 
honeycomb is just a solidifi ed bubble raft of soft 
wax might have trouble explaining how the same 
hexagonal array of cells is found in the nests of 
paper wasps, who build not with wax but with 
chewed-up wads of fi brous wood and plant stem, 
from which they make a kind of paper. Not only 
can surface tension have little effect here, but it 
also seems clear that different types of wasp have 
different inherited instincts for their architectural 
designs, which can vary signifi cantly from one 
species to another.

Although the geometry of soap-fi lm junctions 
is dictated by this interplay of mechanical forces, it 
doesn’t tell us what the shape of the foam will be. 
A typical foam contains polyhedral cells of many 
different shapes and sizes. Look closely and you’ll 
see that their edges are rarely perfectly straight; 

they’re a little curved. That’s because the pressure 
of the gas inside a cell or bubble gets bigger as 
the bubble gets smaller, so the wall of a small 
bubble next to a larger one will bulge outward 
slightly. What’s more, some facets have fi ve sides, 
some six, and some just four or even three. With 
a little bending of the walls, all of these shapes 
can acquire four-way junctions close to the 
“tetrahedral” arrangement needed for mechanical 
stability. So there’s a fair bit of fl exibility (literally) 
in the shapes of the cells. Foams, while subject to 
geometrical rules, are rather disorderly.

Suppose that you could make a “perfect” 
foam in which all the bubbles are the same size. 
What then is the ideal cell shape that makes the 
total bubble wall area as small as possible while 
satisfying the demands for the angles at the 
junctions? That has been debated for many years, 
and for a long time it was thought that the ideal 
cell shape was a 14-sided polyhedron with square 
and hexagonal faces. But in 1993 a slightly more 
economical—although less orderly—structure 
was discovered, consisting of a repeating group 
of eight different cell shapes. This more complex 
pattern was used as the inspiration for the foam-
like design of the swimming stadium of the 2008 
Olympic Games in Beijing.

The rules of cell shape in foams also control 
some of the patterns seen in living cells. Not 
only does a fl y’s compound eye show the same 
hexagonal packing of facets as a bubble raft, 
but the light-sensitive cells within each of the 
individual lenses are also clustered in groups of 
four that look just like soap bubbles. In mutant 
fl ies with more than four of these cells per cluster, 
the arrangements are also more or less identical to 
those that bubbles would adopt.

The economics of surfaces
Because of surface tension, a soap fi lm stretching 
across a loop of wire is pulled fl at like the springy 
membrane of a trampoline. If the wire frame is 
bent, the fi lm also bends with an elegant contour 
that automatically tells you the most economical 
way, in terms of material, to cover over the space 
enclosed by the frame. That can show an architect 
how to make a roof for a complicated structure 
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REPEATED SHAPES 
Soap foams are made up 
of polyhedral bubbles, 
with fl at faces and more 
or less regular shapes. 
Their geometry is 
determined by a small set 
of approximate rules.



BUBBLE GEOMETRY 
The junctions of soap fi lms 
in the bubbles of a foam 
are generally fourfold, 
with the four edges 
pointing roughly to the 
corners of a tetrahedron. 
Note that some bubble 
faces are curved rather 
than fl at, because of the 
differences in gas pressure 
within the bubbles.

using the least amount of material. However, it’s 
as much because of the beauty and elegance of 
these so-called “minimal surfaces” as because of 
their economy that architects such as Frei Otto 
have used them in their buildings.

These surfaces minimize not only their surface 
area, but also their total curvature. The tighter 
the bend, the greater the curvature. As we saw in 
Chapter 1, curvature can be positive (bulges) or 
negative (dips, depressions, and saddles). A curved 

surface can therefore have zero mean curvature 
so long as the positives and negatives cancel each 
other out.

So a sheet can be full of curvature and yet 
have very little or even no mean curvature. Such 
a minimally curved surface can divide up space 
into an orderly labyrinth of passageways and 
channels—a network. These are called periodic 
minimal surfaces. (Periodic just means a structure 
that repeats identically again and again, or in other 



FOAM CRYSTALS
Diatoms, a kind of 
algae, are encased in a 
cage of hard, mineral 
silica called a frustule. 
This is often intricately 
patterned with grooves, 
ridges, and holes, 
rather like a solidifi ed 
foam. It’s thought that 
a foam made from soft 
bubblelike tissue acts as a 
mold during the growth 
of the frustule.

words, a regular pattern.) When such patterns 
were discovered in the nineteenth century, they 
seemed to be just a mathematical curiosity. But 
now we know that nature makes use of them. 

The cells of many different types of organisms, 
from plants to lampreys to rats, contain 
membranes with microscopic structures like this. 
No one knows what they are for, but they are 
so widespread that it’s fair to assume they have 
some sort of useful role. Perhaps they isolate 
one biochemical process from another, avoiding 
crosstalk and interference. Or maybe they are 
just an effi cient way of creating lots of “work 
surface, ” since many biochemical processes 
take place at the surface of membranes, where 
enzymes and other active molecules may be 
embedded. Whatever its function, you don’t need 
complicated genetic instructions to create such a 
labyrinth: the laws of physics will do it for you.

Some butterfl ies, such as the European green 
hairstreak and the emerald patched cattleheart, 
have wing scales containing an orderly labyrinth 
of the tough material called chitin, shaped like 
a particular periodic minimal surface called the 
gyroid. Interference between light waves bouncing 
off this regular structure within the wing scale 
causes some wavelengths—that is, some colors—
to disappear while others (in this case, green)
reinforce each other. So here the patterns offer a 
means of producing animal color. 

Breaking the mold
The skeleton of the sea urchin Cidaris rugosa is a 
porous mesh with the shape of another kind of 
periodic minimal surface. It’s actually an exoskeleton, 
sitting outside the organism’s soft tissue, a 
protective shell that sprouts dangerous-looking 
spines made from the same mineral as chalk and 
marble. The open lattice structure means that the 
material is strong without being too heavy, rather 
like the metal foams used for building aircraft.

“Periodic minimal surfaces seemed to be just a 
mathematical curiosity. But now we know that 
nature makes use of them.”
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To create orderly networks from such hard, 
stiff mineral, these organisms apparently make 
a mold from soft, fl exible membranes and then 
crystallize the hard material inside one of the 
interpenetrating networks. Other creatures may 
cast orderly mineral foams this way for more 
sophisticated purposes. Because of the way that 
light bounces off the elements of the patterned 
structure, such trellises can act rather like mirrors 
and conduits to confi ne and guide light. A 
honeycomb arrangement of hollow microscopic 
channels within the chitin spines of a peculiar 
marine worm known as the sea mouse turn these 
hairlike structures into natural optical fi bers that 
can channel light, making the creature turn from 
red to bluish green depending on the direction of 
the illumination. This color change might serve to 
deter predators.

The principle of using soft tissues and 
membranes as molds for forming patterned 
mineral exoskeletons is widely used in the sea. 
Some sponges have exoskeletons made of bars 
of mineral linked like climbing frames, which 
look remarkably similar to the patterns formed 
by the edges and junctions of soap fi lms in foam 
—no coincidence, if surface tension dictates 
the architecture.

The formation of hard tissue, known as 
biomineralization, generates spectacular results 
in marine organisms called radiolarians and 
diatoms. Some of these have delicately patterned 
exoskeletons made from a mesh of mineral 
hexagons and pentagons: you might call them 
the honeycombs of the sea. When the German 
biologist (and talented artist) Ernst Haeckel 
fi rst saw their shapes in a microscope in the 
late nineteenth century, he made them the star 
attraction of a portfolio of drawings called Art 
Forms in Nature, which were very infl uential 
among artists of the early twentieth century 
and still inspire admiration today. To Haeckel, 
they seemed to offer evidence of a fundamental 
creativity and artistry in the natural world—a 
preference for order and pattern built into the 
very laws of nature. Even if we don’t subscribe to 
that notion now, there’s something in Haeckel’s 
conviction that patterns are an irrepressible 
impulse of the natural world—one that we have 
every right to fi nd beautifu l. 
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FITTING IN 
A single layer or “raft” of 
bubbles contains mostly 
hexagonal bubbles, albeit 
not all of them perfect 
hexagons. There are 
some “defects”—bubbles 
with perhaps fi ve or 
seven sides. Nonetheless, 
all the junctions of bubble 
walls are threefold, 
intersecting at angles that 
are close to 120˚.
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FORCES AT WORK 
Bees seem to have 
evolved capabilities 
for making perfectly 
hexagonal cells from 
the soft wax that they 
secrete. However, some 
researchers believe 
that surface tension in 
the soft wax might be 
suffi cient to pull the cells 
into shape, in much the 
same way as it organizes 
bubbles in a bubble raft.
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MICROSCOPIC HONEYCOMBS OF THE SEA   
The complex, perforated exoskeletons of radiolarians are 
like “frozen foams”: they are made by the crystallization of 
a hard mineral at the junctions between bubblelike vesicles 
that are temporarily formed as the structure is deposited. 
It’s no surprise, then, that they observe some of the “rules” 
of bubble layers, forming a roughly hexagonal arrangement 
in which the edges join in threes at approximately 120˚. 
These basic principles are elaborated in many different ways 
in different species. Radiolarians like this are typically about 
0.1–0.2 mm wide.





MAKING USE OF BUBBLES 
Bubbles and foams are put 
to use in nature. Here the 
common purple snail (Janthina 
janthina) hangs onto the 
surface of the sea from a 
buoyant raft made of bubbles 
coated with mucus. This 
enables the snail to feed on 
small creatures that live at the 
water’s surface.
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STRUCTURAL COLOR 
Tiny parallel ridges on 
the surfaces of the 
scales of butterfl y wings 
cause interference in the 
refl ected light that picks 
out certain colors—in 
other words, some of 
these colors (particularly 
the iridescent blues and 
greens) are made not by 
light-absorbing pigments 
but by light-scattering 
structural patterns. 
However, even closer 
inspection of the wing 
scales of some butterfl y 
species shows a still 
fi ner and more intricate 
structure, as we will see 
on the next page.
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BUTTERFLY FOAM
These cross-sections 
of the wing scales of 
the green hairstreak 
butterfl y (Callophrys 
rubi) show that the 
fabric, made from the 
glucose-based material 
chitin, is perforated 
with an ordered, three-
dimensional labyrinth 
of channels that has 
the same structure as a 
mathematical “periodic 
minimal surface” known 
as a gyroid. It is thought 
to be formed on a 
foamlike template made 
of soft membrane. The 
structure is strong and 
lightweight, but its key 
function is to cause 
interference of the 
refl ected light rays so as 
to make the wing scales 
appear green.



MINERAL MESH 
The fi ligree porous 
skeletons of sponges, 
such as this Venus’s 
fl ower basket, are made 
from spines or “spicules” 
of glasslike material 
woven together.
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SEA SCULPTURES 
Many marine organisms, including coccolithophores (1), diatoms 
(2 and 4), and dinofl agelletes (3), have hard exoskeleton shells that are 
delicately patterned, often with a porous, foamlike appearance. While 
it seems likely that they, too, are created by the deposition of a hard 
mineral on a template of soft organic material, the details of this process 
are in many cases not fully understood.



KEEP YOUR DISTANCE
The sea urchin Cidaris rugosa 
defends itself with an armor cladding 
of spines, made from hard calcium 
carbonate patterned with intricate 
textures. This patterning continues 
down to the microscopic scale, 
where the mineral turns out to 
have the ordered, porous structure 
shown below.
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BUBBLE VISION
The compound eyes of insects are packed 

hexagonally, just like the bubbles of a bubble raft—
although, in fact, each facet is a lens connected to 

a long, thin, retinal cell beneath. The structures that 
are formed by clusters of biological cells often have 

forms governed by much the same rules as foams and 
bubble rafts—for example, just three cell walls meet 
at any vertex. The microscopic structure of the facets 
of a fl y’s eye—beyond what is visible here—supplies 

one of the best examples. Each facet contains a 
cluster of four light-sensitive cells that have the same 

shape as a cluster of four ordinary bubbles.







BUBBLES AND FOAM 187

SHAPING A DROPLET 
When water sits on a water-repellent surface, it may break 
up into droplets. The shapes of these drops are governed 
by surface tension, which pulls them into roughly spherical 
shapes, as well as by gravity (which will fl atten a droplet on 
a horizontal surface) and the forces that act between the 
water and the underlying surface. If those latter forces are 
strong enough, the droplets are pulled into lens-shaped 
pancakes. And if the surface isn’t strongly water-repellent, 
the droplets may spread out into a fl at, smooth fi lm. 



ARRAYS 
& TILINGS
Why crystals aren’t fi ve-sided—and 
how to make impossible ones that are

7
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In the early seventeenth century, German 
astronomer Johannes Kepler wondered if there 
was a more tangible reason than God’s will for 

the shapes of crystals. In particular, he asked why 
snowfl akes always have six points. He knew that if 
cannonballs are stacked compactly together, each 
ball is surrounded by six others at the corners of 
a hexagon. Might the sixfold symmetry of the icy 
snowfl ake come from the stacking of “globules” 
of frozen water?

Kepler never got to the bottom of the 
snowfl ake problem—that took another four 
centuries. But his intuition about the cause of 
crystals’ regularity was right. The eighteenth-
century French priest and botanist René Just Haüy 
fi gured that crystal shapes are indeed dictated 
by the arrangements of their atoms. In his book 
on mineralogy in 1801—the founding text of the 
science of crystallography—Haüy showed how 
atom-stacking produces facets rather like the 
triangular faces of an ancient stepped pyramid.

Because of this atomic-scale structure, the 
shapes of crystals often echo those of the smallest 
repeating cluster of atoms in the crystal lattice. For 
ordinary rock salt (sodium chloride) this cluster is 
cube-shaped, and so are the crystals—as you can 
see by looking at table salt under a microscope. 
Calcite, a mineral form of the compound calcium 
carbonate, has rhombus-shaped facets because 
that, too, is how the atomic building blocks 

are arranged. These crystal shapes, or so-called 
“habits,” of minerals are diverse and beautiful, but 
all in some way bear the imprint, at scales we can 
see and touch, of the arrangements of the atoms 
that constitute them.

These crystal structures can be classifi ed by 
their symmetry properties, just like the forms we 
looked at in Chapter 1—whether they can be 
rotated or refl ected, say, to leave their appearance 
unchanged. There are only a fi xed number of ways 
of arranging objects so that they will repeat again 
and again in perfect array. Each of these distinct 
repeating patterns is called a group, because it 
has an associated group of symmetry operations. 
In two dimensions, for example, we can pack 
together squares, hexagons, and equilateral 
triangles this way into “tiling” patterns. If the tiles 
are not regular polygons of this sort—if they are 
rectangles, say, like the arrangement of bricks in 
a wall—then there are other tiling groups, too. 
There are precisely 17 of these two-dimensional 
“wallpaper” groups, many of which have been 
used in decorative schemes for walls and fl oors by 
various cultures since ancient times. 

Crystals are made by stacking atoms in three
dimensions. In this case, there are 230 symmetry 
groups (called space groups): 230 different ways 
of arranging objects into regular 3-D arrays. All 
crystals must belong to one of these groups—
otherwise they couldn’t be true crystals, because 

Some early philosophers suspected that the world was, at root, geometric: 
built by God according to simple mathematical rules. It was an understandable 
assumption if you think about crystals—the very stuff of the earth—with 
their orderly, faceted shapes. Miners and explorers of underground caverns 
could fi nd themselves in a geometric universe, where all around nature was 
organized into glittering mathematical perfection. Wasn’t this evidence of 
nature’s fundamental order imprinting itself on matter?

CRYSTAL TAPESTRY 
Crystals of magnesium 
chloride, seen under 
polarized light.
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they wouldn’t be made up of elements whose 
arrangement repeats again and again. (As we’ll 
see, though, this depends on how you want to 
defi ne a crystal.) 

The simplest crystals, such as metals, are made 
of identical atoms. Since all the atoms are the 
same size, they can be effi ciently packed together 
into hexagonal arrays, like the cannonball piles 
noted by Kepler. This is the densest possible way 
to stack spheres—a fact proved only in 1994—
and it is called hexagonal close-packing. It has 
only about 25 percent empty space between the 
spheres. Some metals, such as iron, chromium, 
and tungsten, instead adopt a so-called “body-
centered cubic lattice”, in which the repeating unit 
consists of eight atoms at the corners of a cube 
and one in the middle. For cannonballlike spheres, 
this has 32 percent empty space. In diamonds, 
carbon atoms are packed into repeating patterns 
of eight atoms, again with a cubic shape, which 
for spheres leaves as much as 66 percent of the 
space empty. For crystals containing several or 
many different types of atoms, the atomic-scale 
structures can get pretty complicated, but the 
repeating patterns still have to correspond to one 
of the 230 space groups. 

The interference between X-rays bouncing off 
regular arrays of atoms and molecules produces a 
pattern of bright spots in the scattered beam from 
which the positions of the atoms can be deduced. 
This technique, called X-ray crystallography, was 
fi rst used in the early twentieth century to deduce 
the crystal structures of simple minerals, but from 
the middle of the century it began to reveal the 
atomic structures of complex biological molecules 
such as proteins, enabling scientists to understand 
how life works at the molecular scale. In 1953 
X-ray crystallography was used to study the crystals 
formed by DNA, and thereby to show that this vital 
biomolecule has its famous double-helix structure.

When a crystal melts to a liquid, it loses its 
atomic-scale order; there is no longer any regularly 
repeating array. However, some substances can 
melt in one direction while remaining ordered 
in others. In particular, some long, rod-shaped 
molecules may form liquids that fl ow, even 
though the molecules stay lined up roughly 
parallel to each other, a little like logs fl oating on 

a river. These are liquid crystals. In some liquid 
crystals the aligned molecules stack up in regularly 
spaced layers even though, within a given layer, 
the molecules move around and jostle like people 
in a crowd. The alignment of molecules in liquid 
crystals can make them scatter polarized light into 
spectacular patterns, from which it is possible to 
deduce something about the molecular order that 
the liquid crystal contains. 

The law of tiling, and how to 
break it
The patterns of crystalline lattices are governed 
by strict geometrical rules that “forbid” certain 
types of symmetry. For the 17 two-dimensional 
tiling patterns, for example, the tiles can have the 
same symmetry as squares, rectangles, hexagons, 
rhombi, or triangles. You can rotate the pattern 
symmetrically by half a full revolution (for rhombic 
or rectangular tiles), or a quarter, a third, or a 
sixth—but not a fi fth. There are no tile shapes 
that can be fi tted together perfectly, with no gaps, 
to create a tiling lattice with fi vefold symmetry: 
you can’t tile pentagons perfectly. The same is 
true for all tiles with more than sixfold symmetry 
(sevenfold, eightfold, and so on). This applies to 
3-D space groups, too: you can’t make an orderly 
framework in three dimensions from units with 
fi vefold symmetry. This might seem unfair on the 
pentagon, but it’s just a fact of basic geometry. 

At least, so we thought until three decades 
ago, when a material that seemed to be crystalline 
was found to have one of these “forbidden” 
symmetries. In 1984, researchers working in 
the USA discovered an alloy of aluminum and 
the metal manganese that, according to X-ray 
crystallography, seemed to have tenfold crystal 
symmetry: X-rays bounced off this material to 
produce rings of ten equally spaced spots. That 
seemed to imply a crystal lattice with tenfold 
(or fi vefold) symmetry, which was impossible 
according to the laws of geometry. What was 
going on?

This material was the fi rst so-called 
“quasicrystal.” Over the following decade or so, 
scientists realized that it is possible to organize 
atoms into patterns with fi vefold (and eightfold, 
tenfold, and twelvefold) symmetry that don’t 

1 GROWING ICE 
Ice crystals, like these 
on a window in winter, 
can grow into beautiful 
and complex branched 
shapes in a process called 
dendritic growth. The 
same process creates the 
shape of snowfl akes.

2 STAR QUALITY 
Snowfl akes display sixfold
(hexagonal) symmetry. 
This refl ects the hexagonal 
arrangement of water 
molecules in the ice 
crystal, translated to a 
scale that can be seen 
(just) with the naked 
eye—but also elaborated 
into exotic patterns by 
the growth process of 
the fl akes.
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quite repeat exactly, as crystals were known to do. 
These patterns look at a casual glance as though 
they are pentagonlike lattices, but every so often 
the pattern slips, so that it is never possible to 
rotate or move it in a way that superimposes 
it exactly on itself. Despite this lack of perfect 
regularity and order, the pattern (when built from 
atoms) is orderly enough to produce bright spots 
in the refl ected X-rays. The International Union of 
Crystallography has, in fact, now broadened 
the very defi nition of a crystal so that it can 
include quasicrystals.

The easiest way to understand quasicrystal 
patterns is again to think of tilings in two 
dimensions, although the actual crystals are three-
dimensional. You can’t tile pentagons, but in the 

1970s the mathematical physicist Roger Penrose 
discovered a set of two rhombus-shaped tiles 
that can be fi tted together without gaps to create 
a lattice fi lled with fi vefold symmetric shapes: 
fi ve-pointed stars and decagons, for example. 
This tiling never quite repeats its pattern exactly, 
but if it is built up while applying a few simple 
rules about which tile can lie next to which, it can 
be extended forever. If you imagine putting an 
atom at the corner of each tile (or the equivalent 
rhomboids in three dimensions), you end up with 
an array that appears to be very much like the 
atomic lattice of a quasicrystal.  

Such patterns, which seem to bend the rules 
of geometry, were already known to Islamic artists 
hundreds of years ago, who explored them in 

MINERAL 
LANDSCAPES 
Crystals may form 
complex structures and 
patterns over many 
different size scales, from 
the atomic level up, as 
seen in this sample of 
the mineral sphalerite 
(zinc sulfi de).



complex designs and mosaic tilings. Both because 
of religious restrictions on depictions of the 
natural world and because Islamic philosophers 
were deeply interested in mathematics, these 
tiling patterns were developed into a highly 
sophisticated art that can be found decorating 
shrines, mosques, and palaces throughout the 
Islamic world. One design on the Darb-i-Imam 
shrine in Isfahan, Iran, made in 1453, is almost 
identical to a Penrose tiling, with its mesmeric, 
never-quite-repeating pattern. The tiling patterns 
were constructed from conceptual building blocks 
called girih according to strict assembly rules 
similar (but not identical) to those used to make 
Penrose tilings.

Flowers of ice
Snowfl akes show the pattern-forming potential 
of crystals at its most exuberant. While Kepler 
guessed at the underlying reason for the geometric 
regularity of crystals, in the snowfl ake this 
orderliness is taken to kaleidoscopic extremes, 
creating shapes in which the symmetry of the 
hexagon is embellished almost to an absurd 
degree. If the packing together of atoms and 
molecules generates blocky facets, why then 
do these ice crystals take on such delicate and 
ornate shapes? 

Some snowfl akes are fancier than others. The 
spectacular frondlike fl akes commonly shown 
in snowfl ake pictures are usually cherry-picked 
from among less-perfectly symmetrical examples 

LIQUID CRYSTALS
These crystals have a 
liquidlike ordering of 
their molecules in one 
or two directions, 
while being disorderly 
and liquidlike in the 
others. The molecular 
arrangements can 
twist polarized light,
resulting in these 
colorful textures when 
seen under a polarized-
light microscope.
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CRYSTAL FLOWERS 
Careful control of the 
growth conditions—
temperature, acidity, and 
concentration of dissolved 
gas—gives rise to these 
ornate and diverse 
crystal shapes of barium 
carbonate and silica 
precipitated in a solution 
of metal salts. The 
basic forms are shaped 
like stems, vases, and 
corals; by switching the 
conditions during growth, 
the crystals can be guided 
into these and other 
fl owerlike structures. The 
colors have been added 
to the image artifi cially to 
enhance the “botanical” 
appearance.
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Isaac Newton was convinced that metals 
and minerals possess what he called a 
“vegetative soul,” because of the way they 
could grow into structures that looked 
more like plants than crystals. Newton 
experimented with what are now often 
called chemical gardens—metal salts 
precipitated in a solution of what in 
Newton’s day was known as oil of sand, 
which is sodium or potassium silicate 
(water glass). The salts grow into weird 
tentacles and branching fronds, because 
the silicate forms a tough but fl exible and 
water-permeable skin, through which 
the salt repeatedly bursts out upward. 
The structures that result are peculiarly 
lifelike: they could be bizarre, bulbous 
root vegetables from an alien world. Some 
scientists speculate that complex mineral 
structures like this, wrapped in membranes, 
might have played a part in the origin 
of primitive life on Earth at deep-sea 
hydrothermal vents where warm mineral-
rich fl uids spew out from the Earth’s crust.

A team of researchers at Harvard 
University has devised a particularly 
fl oral variant of the chemical garden 
process. They adjusted the acidity and 
concentration of dissolved carbon dioxide 
in the solution as crystals precipitated 
in water glass. This caused the tips of 
growing tendrils to blossom into curved 
and ruffl ed conelike shapes that, when 
examined under the microscope, look like 
fl owers or corals —a chemical garden truly 
worthy of the name, and an indication that 
even crystals can escape from the chains 
of geometry to offer patterns of vivid, 
uninhibited artistry.

and, depending on the precise meteorological 
conditions (the air temperature and humidity), 
snow can also fall as simpler hexagonal plates or 
prisms. All the same, the variety and complexity 
of snowfl akes can be stunning, and it is a 
mystery even now why so often each arm mirrors 
the others down to the fi nest detail. 

A typical snowfl ake arm is a needlelike ice 
crystal decorated by smaller needles that branch 
off at the “hexagonal angle” of 60˚. Why this 
branching? And why this hexagonality?

Although no other kind of crystal comes close 
to snowfl akes for elaborate beauty, their pattern 
is not totally unique. When some molten metals 
solidify quickly, they too can sprout Christmas-
treelike arms. This phenomenon is called dendritic 
growth, after the Greek word for branch. 
Dendritic growth is an example of a growth 
instability, which basically means that something 
gets blown up out of control as a shape or pattern 
grows. We saw in Chapter 2 how aggregation 
due to the sticking of randomly drifting particles 
produces the tenuous forms of fractals. Any bump 
that appears by chance on the surface of the 
cluster grows faster than the rest simply because 
it is more exposed. So randomness at the surface 
quickly gets amplifi ed and the cluster sp rawls into 
its monstrous, tendriled form.

Something similar happens in dendritic 
growth during freezing of a liquid: a random 
bump grows faster than the surface around it, 
this time because the bump is better at radiating 
away heat so that more crystal can grow there. 
But this alone would make snowfl akes ragged 
fractals. What about the hexagonal regularity? 
This comes from the crystal structure of the ice 
itself, which contains water molecules linked 
into hexagonal rings. This structure means that 
the branching instability happens on a kind of 
microscopic hexagonal grid that sets up a bias for 
the directions in which the branches grow: they 
surge ahead faster at the hexagonal angles than 
at others. The combination of random branching 
and orderly underlying lattice creates the exquisite 
complexity of the snowfl ake, poised on the brink 
of chaos and minutely sensitive to tiny variations 
in the temperature and humidity of the air. This 
acute sensitivity ensures that no two snowfl akes 
seem to be exactly alike: they are endless 
variations on a theme, as if trying to convince us 
of nature’s intrinsic creativity.

Chemical gardens
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INTERFERENCE 
The colors of this complex layered crystal in the shell 
of the New Zealand paua mollusk (1) and in the texture 
of this liquid crystal (2) are produced by interference 
effects in light. These may pick out the microscopic 
structures of the material. In the shell, we can see 
the terracelike layering of the hard mineral, organized 
by soft organic tissues during shell growth, while 
in the liquid crystal the microscopic structure comes 
from the shared orientation of rod-shaped molecules 
packed together.
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CRYSTAL TREES
In the process known 
as dendritic growth, 
seen here in magnesium 
citrate (1) and ice (2), a 
growing crystal acquires 
a needlelike shape that is 
then decorated with side 
branches at successively 
fi ner scales. This process 
happens when tiny 
random bumps at the 
surface of the solidifying 
crystal get amplifi ed and 
sharpened, because they 
are better at radiating 
the heat that needs to be 
shed for crystallization 
to occur. This, then, is 
another feedback process 
that generates pattern 
from randomness—in 
this case, given a degree 
of regularity by the order 
in the underlying atomic 
structure of the crystal. 





FORMING ICE PATTERNS 
The precise patterns formed by dendritic growth 
of ice on surfaces are a combination of chance 

and determinism. In general, the crystals branch 
repeatedly, but each individual crystal is often seeded 

by an impurity or defect on the solid surface—so 
that, for example, they might follow the tracks of 

almost invisible scratches on glass.
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CRYSTAL RAINBOWS 
Some crystals, particularly those of organic 
compounds such as vitamins and amino 
acids, have a property called birefringence, 
which means that light rays passing through 
them can be split into two. These two 
beams can then interfere with each other, 
picking out particular colors from the visible 
spectrum when the crystals are viewed with 
polarized light. The spectacular color displays 
accentuate the shapes and textures of the 
crystals, which are formed as they grow. The 
examples shown here are magnesium citrate 
(1), vitamin C (2), and cholesterol (3).
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MOLECULAR 
MEETINGS
The textures of liquid 
crystals, revealed by 
interference of polarized 
light, are wonderfully 
varied. Some of the 
structures in these 
patterns comes from so-
called “defects” where the 
stacking arrangement of 
the molecules contains an 
irregularity—for example, 
boundaries where side-
by-side molecules slant 
in different directions 
(like partings in hair) 
or singularities where 
molecules radiating 
in different directions 
converge at a point (like 
the crown in hair, or 
the poles of the Earth’s 
magnetic fi eld).



2
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1 and 2 THE MANY 
FACETS OF CRYSTALS
The shapes of crystals 
often refl ect the 
symmetries of the 
stacking arrangements 
for their constituent 
atoms and molecules. 
Thus the square shapes of 
crystals of common salt 
(1) stem from the cubic 
arrays of the sodium 
and chloride ions from 
which they are made. 
Likewise for the rhombus-
shaped cross-section 
of  magnesium sulfate 
crystals (2).

3 CHANGE OF 
STRUCTURE
Here crystals of copper 
sulfate—the light blue 
blobs—are embellished 
with white needlelike 
crystals, which are also 
copper sulfate but lack 
the water molecules that 
are incorporated into the 
blue material. This white 
form grows more quickly 
and in a different shape.
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HEXAGONAL BRANCHING
Snowfl akes seem to provide inexhaustible 

invention on the hexagonal theme. The branching 
of arms and hexagonality of the pattern are 

now well understood, but mysteries remain. It’s 
not fully obvious why the ice crystals grow as 

fl at plates (other shapes are also possible under 
different conditions of air temperature and 

humidity), nor why all the branches are nearly 
identical. Not all snowfl akes are this perfectly 

symmetrical, however.
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3 and 4 DISCOVERING 
ORDER
The atomic-scale order of 
crystals was fi rst seen directly 
using techniques called fi eld 
emission microscopy and fi eld ion 
microscopy, in which each bright 
dot (seen here for the metals 
iridium [3] and platinum [4]) 
corresponds to a single atom at 
the surface of a fi ne tip.

1 and 2 VIRAL SYMMETRY 
Even some biological objects 
have a crystallike regularity at 
the molecular scale. Viruses, 
such as the West Nile virus (1) 
and simian virus 40 (2), are 
particularly good examples: they 
are made of protein molecules 
packed together in a shell 
called a capsid, with the genetic 
material packaged inside. The 
capsids commonly show fi vefold 
symmetries.

5 X-RAY REVELATION 
The most common way to fi gure 
out the atomic-scale structure 
of a crystal is called X-ray 
diffraction. The interference of 
X-rays bouncing off different 
layers of atoms in the crystal 
creates a series of bright X-ray 
spots, which can be recorded 
(originally on photographic fi lm) 
and decoded mathematically to 

deduce where the atoms are. The 
technique was invented over a 
hundred years ago, and can now 
be used to reveal the structures 
even of complicated biological 
molecules, such as the enzyme 
that produced this diffraction 
pattern. This is how the double-
helix structure of DNA was 
deduced in 1953.
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CHEMICAL GARDENS
When crystalline solids are precipitated from dissolved salts in a solution of water glass 
(sodium silicate), the silicate can form a soft membrane around the growing crystal that 
dictates its shape, producing bulbous, “organic” structures. Every so often, pressure 
differences on each side of the membrane may cause it to rupture, releasing jets of solution 
that crystallize into “branches.” In this way, the crystalline material comes to look more like a 
plant form. These structures are commonly called chemical gardens. When this same process 
is carried out in the narrow space between two fl at plates, the crystal structures are more or 
less two-dimensional, and can take on ornate, curved forms like those shown here, made 
from a cobalt salt.
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MINERAL FILAMENTS
These are some of the delicate crystal structures 
produced in the chemical gardens described on 
page 196. Several different types of crystalline 

salt are growing in these gardens (not all of which 
are visible). Each has a characteristic color: copper 

nitrate (light blue), cobalt chloride (dark blue), 
ammonium iron sulfate (brown), magnesium 

nitrate (white), and iron sulfate (green). 
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1–3 CRYSTAL CAVES
When minerals grow slowly underground 
from the cooling of warm fl uids rich in 
dissolved salts, the crystals can grow to 
immense sizes, such as these pillars of 
selenite (a kind of gypsum) in the Naica 
mines of Mexico.
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4 NEEDLE WORK
Crystals of aragonite, a form of calcium 
carbonate, grown slowly in a French cave. 
The shapes of crystals like this depend on the 
precise arrangements of the constituent atoms 
and ions—but the growth must be very slow 
to allow such large, perfect crystals to develop.



8 CRACKS
How things fall apart and how a 
giant made his staircase 
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Crash! Lightning forks down from the 
sky. Crack! The ground splits apart in an 
earthquake. Smash! A pottery jug falls 

to the fl oor. All of these events produce similar 
shapes: branching, jagged, forked, fragmented. 
Coincidence? Of course not! The archetypal 
“geometry of failure”—the shapes that come from 
things breaking, splitting, cracking—is a fi ssure 
that branches, the branch tips splitting into ever 
more junctions and thereby generating another 
of nature’s fractal forms. We see these patterns 
not only in the cracks of a pavement slab, but also 
in the pattern of river networks—a kind of “slow 
crack” made as a river’s headwaters erode the 
landscape in which they form.

These majestic watercourses split apart 
the earth, carve out mountain ranges, nurture 
civilizations, and astonish us with their complexity. 
The similarity between their shapes and those of 
the veins that carry blood around the human body 
was noticed many centuries ago, and stimulated 
the idea voiced both in ancient China and in 
Renaissance Europe that rivers are the “blood 
of the earth.” That’s not just a superfi cial and 
misguided pre-scientifi c analogy: modern science 
shows that these correspondences in appearance 
are indeed more than coincidental.

Out of action
The explanation for the patterns in both cases 
may not be so different from that for the simple 
parabolic path of a golf ball soaring into the 
air and falling back to the green. But what, you 

might ask, can the jagged trajectory of water 
plunging down mountain slopes have in common 
with the smooth, graceful arc of a ball moving 
through empty space?

Both are bodies in motion, moving under the 
force of gravity. For the golf ball, that movement 
is described by Isaac Newton’s laws of mechanics, 
which relate the velocity and acceleration of the 
ball to the forces acting on it. Solve Newton’s 
equations and you predict the parabola.

But there’s another way to do that reckoning. 
You can write down a quantity called the action, 
which depends on the energies of the ball’s 
motion—its gravitational energy, due to being 
high in the sky, and its kinetic energy due to its 
movement. Then, to deduce the ball’s trajectory, 
you have to fi gure out which path produces the 
smallest amount of this quantity called action. 
Think of this as something loosely like “effort.” 
Which path do you take to go to the store? The 
one (probably) that requires the least effort. 
Which path does the ball take? The one that 
requires the least action.

Just as the “law of least action” defi nes the 
parabola of a falling ball, so is there a law of 
“least something” that defi nes the path of water 
fl owing down a hill. That “something” is the 
rate at which the water’s gravitational energy, 
due to its initial position high up on the slope, 
is expended and dissipated. This prescription 
produces a trajectory of water fl ow that looks 
just like the fractal network of a river basin. But 
how does all the water “know” which network 

Breakage and decay seem like the very antithesis of order and organization, 
but surprisingly they too can produce varieties of pattern and structure. In 
some cases it might not look that way; cracks have a jagged chaos that speaks 
of wild disarray. But even this form recurs in so many different situations 
that we have to suspect it is the signature of a deeper design, a universal 
outcome of natural laws. And other crack patterns, like the trellis of fi ssures in 
pottery glaze or old paint, have a pleasing geometry of the same stamp which 
captivates us in foams, spiders’ webs, and wrinkle textures. We might even 
seek them out for their aesthetic appeal; cracking, far from being a nuisance, 
becomes a source of creative opportunity.



THE EARTH MOVES 
Cracks are typically 
ragged-edged; some 
have a fractal profi le. 
But there’s a particular 
direction to them, too; 
here again is the familiar 
balance of chance and 
determinism.



1

CRYSTAL CLEAR
A lacework of cracks 
threads and weaves 
through ice.
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dissipation? It doesn’t, of course. If we assume 
only that the water falls on a randomly bumpy 
surface and fl ows down the steepest gradient, 
and that this fl ow will, if fast enough, erode and 
carry away some of the ground, then we fi nd that 
the pattern of fl ow spontaneously evolves into a 
“minimal network.” From simple “local” rules that 
describe how each little part of the fl ow behaves, 
a grand design emerges: the design we see for the 
Yangtze, the Amazon, the Rhine. Not only does 
it produce the characteristically branched aerial 
view of a river basin, but at the same time it wears 
away a bland, randomly rough landscape into one 
graced with soaring peaks, plunging precipices, 
and sharply incized valleys—all from a single 
generative principle. 

On the edge
There’s not so much difference between a 
river eroding a mountain and a sea eroding a 
coastline: in both cases, the energy of the water’s 
movement batters and abrades the rock, breaking 

off little particles and carrying them away to 
carve out a particular shape. And in both cases, a 
combination of randomness and feedback turns 
what was once uniform into something pitted, 
uneven, and fractal.

Coastlines have a special place in the story 
of fractal patterns, for they were one of the 
natural forms that prompted Benoit Mandelbrot 
to come up with the concept of self-similarity, 
this elaboration on ever smaller scales. And yet it 
wasn’t until rather recently that a good theory of 
how coasts get their shape was cooked up. 

 Imagine a coastline that is randomly shaped 
(remember, that’s not the same as fractal) and 
where the rock type—and therefore resistance 
to erosion—varies randomly from place to place. 
There’s some gradual and constant erosion as the 
rocks slowly dissolve in water, and also some fast, 
sporadic erosion caused by storms.

How does the shape of the coast evolve 
under these conditions? What begins as random 
becomes ever more irregular and fractal, as little 

COASTAL EROSION 
Erosion by water (sea 
and surf) sculpts many 
coastlines into complex, 
irregular shapes with a 
fractal structure.
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ever more irregular and fractal, as little dips are 
hollowed out into big bays while small protrusions 
are sculpted into jutting headlands. Whether a 
section of coast is removed depends partly on how 
strong the rock is, but also on how exposed it is. By 
the same token, the coastline’s shape feeds back 
on the ocean forces that generate it: the more 
convoluted it becomes, the more it disrupts and 
damps down the waves, slowing the erosion. Out 
of this complex interplay of effects come structures 
that resemble the true forms of the land’s end, with 
their islands, fjords, and peninsulas.

These geological processes of erosion happen 
over decades, centuries, millennia. Can they have 
much in common with the kind of breakdown that 
takes place in the blink of an eye, as a window 
shatters or a lightning bolt forks through the 
torpid summer sky? That’s not obvious, and yet 
the patterns seem to insist on the analogy—for 
doesn’t lightning take on the same branched, 
fractal form as a river network?

The splitting of a material as high-voltage 
electricity courses through it is called dielectric 
breakdown. The pattern of the crack is like a 
frozen replica of the spark that caused it, and 
is called a Lichtenberg fi gure, after the German 
scientist who fi rst investigated this kind of 
breakdown. In a three-dimensional block of clear 
plastic it is like a barren tree or fantastic marine 
weed, extending its fi ngers throughout the 
material. Here is a real marriage of lightning and 
cracking, a substance split by electricity into a rich 
record of fractal failure. Can we account for it?

Imagine dumping a dollop of electrical charge 
into the center of a slab of material, so that it 
wants to fl ow out to the edges as the charged 
particles repel one another. Which path does the 
fl ow of electricity take?

Like water on a hillslope, it seeks out the 
steepest gradient; that’s to say, it will advance 
from wherever the electric fi eld at the boundary 
of the discharge is strongest. And those places are 
where the boundary is the sharpest: at bulges and 
tips. That’s why lightning conductors on buildings 
are sharp spikes: they encourage the electrical 
discharge to happen there.

This forward surge of a tip is complicated by 
randomness—by little chance fl uctuations in the 
electric fi eld or in the material’s structure that can 
generate new bumps that themselves then rapidly 
sprout into a new tip. So the tips split as they 
advance, and the result is a treelike, branching form. 
Depending on the atmospheric conditions, this 
elaboration of a lightning bolt can create dramatic, 
spectacular, natural rivers of electricity.

This description of dielectric breakdown can 
be modifi ed to account for cracking, too. Here, 
instead of thinking about the path of the electrical 
current, we think of the path opened up by 
breakage of the material. Again that breakage is 
most likely at the crack tips, because this time it 
is the stress that is greatest at the tip. And once 
more, randomness—variations in the strength of 
the material, say, or pre-existing little cracks and 
fl aws—induces tip-splitting and branching.

Crazy paving
If a lake dries up, or if the moist soil of a pasture 
or garden becomes parched, the ground contracts 
as the water evaporates from between the soil 
particles. This means that the dry layer at the 
surface tries to shrink relative to the still-moist 
layer below, and the ground becomes laced with 
tension throughout. Then the surface breaks 
apart not with the appearance of a single, 
branching crack but by the formation of an 
interconnected network of fi ssures that split it 
into isolated islands.  

These patterns, so familiar as a kind of pictorial 
shorthand for tales of drought, are rather beautiful. 
They are also quite different from the fractal 
networks of dielectric breakdown and river erosion. 
The islands often have a polygonal shape defi ned 
by their fl at edges, although sometimes the edges 
are less smooth and more erratic. The crack lines 
intersect rather cleanly, usually at relatively large 
angles of around 60–90o. There is a universal 
character to these patterns, too: we recognize 
them not just in dried-up lake beds but in pottery 
glazes such as raku and in the fl aking of paint. The 
driving force is much the same in all cases: the 
glaze, say, bound to the ceramic surface, cracks 

DEATH VALLEY, USA
When mud lying on the 
bottom of a dried-up lake 
becomes dry and shrinks 
as water is removed 
from between the fi ne 
particles, stresses build 
up that lead eventually to 
cracking. The patterns are 
a fi ne balance of order 
and disorder. The cracks 
may be jagged, but they 
divide up the dry layer 
into islands that have 
roughly the same size and 
are often approximately 
polygonal in shape. This 
pattern is typically the 
one that is most effi cient 
at relieving the stresses in 
the contracting material.





A GIANT’S WORK
At Fingal’s Cave on the 
Isle of Staffa, Scotland, 
networks of cracks 
growing downward 
through a layer of cooling 
and solidifying basalt 
have become highly 
regular, almost geomet-
ric, so that they break 
up the rock into these 
prism-shaped columns, 
typically with six sides 
and a roughly hexagonal 
cross-section.

“Stress-relieving crack networks carve out some of 
nature’s most spectacular fracture patterns.”

as it cools and contracts. The result is so pleasing 
that in pottery it may be induced on purpose.

What dictates this artful geometry? It seems 
again to be governed by a minimization rule: the 
cracks take paths that release the stress in 
the shrinking layer as effectively as possible. 
In glazes this happens when the cracks meet at 
right-angle junctions, and so the cracks are 
shaped and positioned to enable this, even 
if it means that one crack must bend as it 
approaches another.

Stress-relieving crack networks carve out some 
of nature’s most spectacular fracture patterns: the 
hexagonal pillars of rock found at Fingal’s Cave 
off the coast of Scotland, the Giant’s Causeway 
in Northern Ireland, and the Devil’s Postpile in 
California. How nature can produce formations so 

seemingly ordered, geometrical, almost designed, 
has perplexed scientists and philosophers for 
centuries. It isn’t hard to understand how these 
patterns, just like the hexagonal perfection of the 
bee’s honeycomb, must have convinced scientists 
and naturalists of earlier ages that they were 
seeing the work of the divine—or the supernatural. 
Fingal’s Cave was traditionally said to have been 
part of an immense paved causeway across the 
North Channel above the Irish Sea, stretching from 
Ireland to Scotland and built by the Irish giant Finn 
MacCool (Fingal) so that he could stride across to 
fi ght a rival Scottish giant. This bridge, it was said, 
began in County Antrim, where today the Giant’s 
Causeway stands on the wild coast. 

These geological formations were created as 
volcanic rock surged to the planet’s surface and 
hardened around 60 million years ago. Why the 
stresses induced by cooling and contraction of 
the molten rock should have generated so 
orderly a system of fi ssures puzzled scientists 
for a long time.  
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slab of material as it cools or hardens. What’s 
more, the pattern isn’t constrained by the initial 
appearance of a few very long, smooth cracks, 
as it is in the glaze. For such reasons, hexagonal 
junctions are preferred over the right-angle 
junctions of raku. It’s the same basic idea—how 
best to release stress caused by shrinkage—but 
the solution is different.  

So as the crack network penetrates deeper 
down, it grows ever closer to an ideal honeycomb 
pattern. It never achieves that shape perfectly 
(many of the columns of the Giant’s Causeway 
are rather irregular hexagons, and some have fi ve 
or seven sides), because there’s almost always 
a bit of disorder and randomness in the way 
nature makes its patterns. But the result is close 
enough to geometric perfection to astonish us. 
The topmost layers of the rock formation are far 
less orderly—but these will have been removed 
long ago by erosion. What now remains is one of 
the most striking tributes to the self-organizing 
powers of the natural world.

The key issue is that here nature gets time to 
experiment and refi ne the arrangement of cracks 
so as to gradually fi nd the “best” (and most 
orderly) answer. Cracking appears fi rst at the 
surface of the cooling rock, since it is here that the 
heat escapes most quickly and the molten material 
begins to harden. At fi rst, the stresses that build 
up in the solid layer are relieved by fractures 
appearing more or less at random points, and 
the network looks rather jumbled. But as the 
cracks descend through the solidifying mass, the 
network adjusts to release stress more effectively. 
That happens when these cracks intersect in 
threes, with roughly equal angles between each of 
them—in other words, so that the junctions have 
the 120˚ angles characteristic of a honeycomb-
shaped network of hexagons.

That’s different from the case of a thin layer 
of glaze hardening on the surface of a pot, or 
of mud on a lake bed. For one thing, the cracks 
now are not just weaving horizontally across a 
fl at layer, but are also descending through a thick 

1 CRACKS IN WOOD 
In old, dead trees, cracks 
caused by stresses in 
the dry and contracting 
wood radiate from the 
center, but they are also 
defl ected sideways at 
the boundaries between 
different seasonal growth 
layers (the tree rings), 
where the wood fabric is 
relatively weaker.

2 GLAZED OVER 
The network of cracks 
in pottery glaze is again 
caused by cooling and 
shrinkage of a thin layer, 
which sets up stresses. 
Here the process starts 
with some long, gently 
curving cracks, which are 
then interconnected by 
shorter cracks that 
generally join at right 
angles, producing 
polygonal islands. 
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1 and 2 FAMILIAR FORKING 
The idea that river and stream networks 
are a kind of “breakdown” or cracking 
pattern becomes clear once we compare 
an example like this one, a stream from 
an Icelandic spring (1), with the forked 
network of a lightning strike (2). 

Lightning is an instance of so-called 
“dielectric breakdown,” when an 
electrical discharge passes through a 
normally insulating substance, in this 
case air.
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1 LAVA CRACKS 
The initial stages in the formation of 
the Giant’s Causeway probably looked 
a bit like this—a crack network forming 
in the crust of molten lava. The islands 
here are rather more diverse in size and 
shape than the polygons of the Giant’s 
Causeway, but it’s thought that the crack 
network gradually reorganized itself as 
it penetrated deeper to become more 
regular. The irregular top layers were 
then removed by millions of years 
of erosion.

2 and 3 FLAKING PAINT 
As paint dries, the pigment particles 
are pulled closer together and the fi lm 
cracks. The process is very similar to the 
cooling of a glaze fi lm in pottery, and 
the pattern looks much the same, too.



BRANCHING LIGHTNING
The forked branches of lightning are the 
result of another growth instability. As 
the electrical discharge passes through 
the air between the thundercloud and 
the ground, any small and random 
bumps at the tip become quickly 
amplifi ed into a new branch, because 

the gradient of the electric fi eld (how 
steeply the fi eld changes over a given 
distance) is larger there and so the 
current is more likely to fl ow that way. 
As is the case for many patterns that 
experience these branching instabilities, 
the structure that results is a fractal.
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CRACKED CRUST
Cracks may occur 
at geological scales, 
spreading over many 
miles through the Earth’s 
crust in earthquake zones 
where the movements 
of tectonic plates create 
stresses in the hard rock. 
Such faults, like the San 
Andreas Fault in California 
shown here, are often 
relatively straight and 
unbranched. They are 
cracks that extend deep 
into the crust. 
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RIVER NETWORKS
These highly branched systems have more diverse 
and often more sinuous shapes than cracks in brittle 
material. That’s because the pattern is produced 
from several processes operating at the same time, 
such as erosion and deposition of sediment (which 
combine to create river meanders). The shape might 
also depend on local differences in the strength and 
chemical nature of the underlying rock.
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DEVIL’S POSTPILE, USA
Polygonal columnar cracks 
like those that produced the 
Giant’s Causeway are rather 
rare in geology, but they 
do occur in a few other 
places —such as here, at the 
Devil’s Postpile in California.
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1 and 2 VISCOUS FINGERING 
In this phenomenon, a less viscous fl uid (such 
as air) is pushed or pulled under pressure into 
a more viscous one. When this happens, the 
boundary between the two fl uids is subject to 
another branching growth instability: at any 
protrusion, the pressure in the invading fl uid 
is greater, so it surges forward in a narrowing 
fi nger. Patterns like this are formed when a 
fi lm of sticky fl uid, like an adhesive or 

paint, between two fl at plates is disrupted by 
pulling the plates apart, sucking air into the 
gap. The result is a tracery of fi ne channels, 
looking a bit like river networks (1). In some 
cases the fi ngering instabilty can be tempered 
by the force of surface tension, which acts to 
smooth a branch tip and make it less sharp. 
Then the pattern can become a series of 
thicker branches (2).

3 SINKING PLUMES
As a more dense fl uid sinks through a less 
dense one, the blobs of the denser liquid split 
into fi ngers, which then split again and again, 
creating an inverted branching tree shape. 
This, too, is a process of viscous fi ngering, 
and can occur in the oceans when colder 
or saltier water sinks through warmer or 
fresher water below.
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LICHTENBERG 
FIGURES
An electrical discharge 
passing through a solid 
block of transparent 
material can leave a 
trace of its lightninglike 
path as it cracks the 
material. Sometimes, 
dust or fragments 
attracted electrically to 
the crack surface make 
the structure more visible. 
These patterns are named 
after the eighteenth-
century German scientist 
who fi rst described them.



SPOTS 
& STRIPES
How the zebra paints its coat

9





Animals are exquisite masters of pattern, but 
they seem to follow particular fashions. 
The stripes of the zebra are a popular 

design: as you’d guess, the zebrafi sh has the same 
idea, and so does the angelfi sh, the tiger, some 
antelopes, frogs, caterpillars, and other creatures. 
Another favorite is spots, sported by the leopard, 
the spotted eagle ray, the ladybird, and the red 
spotted toad. Butterfl ies seem to recognize no 
limits: their patterns are dazzling, sumptuous, and 
seemingly endless. 

It’s not always easy to say what these patterns 
are for. The usual assumption among biologists 
and zoologists is that, if evolution has gone to the 
trouble of making an animal patterned, there’s a 
reason for it that somehow works to the animal’s 
advantage: in other words, it is a Darwinian 
adaptation that helps the creature to survive and 
therefore to reproduce. Maybe it’s a warning 
signal to fool or deter predators. Or perhaps it 
helps members of the same species to recognize 
each other, or to impress the opposite sex in 
mating displays.

But although it seems likely that most 

markings do have an adaptive function like this, 
we can’t always be sure what that function is. 
Evolutionary “explanations” for markings may 
come all too easily; evidence for them is harder. 
Take the zebra. It seems obvious that the stripes 
must help it to hide in the shadows, right? 
But zebras spend most of their time on open 
grassland, not among trees and bushes. And if 
stripes help you hide from predators like lions, 
why don’t all their prey have them? The zebra’s 
stripes might not be a form of camoufl age at all, 
but could deter biting fl ies, or regulate body heat, 
or something else. We just don’t know. It’s the 
same story with wild cats; it’s true that there are 
more spotty and mottled ones in habitats that 
create a mottled, patchy background, but there 
are exceptions, too.

And even if these patterns on skins, pelts, and 
scales do have some evolutionary function, that 
doesn’t completely answer the question of where 
they come from. How does any particular zebra 
embryo get imprinted with stripes of pigment-
producing skin cells, which produce dark hairs in 
some places but not in others? Until half a century 

Rudyard Kipling explained in his Just So Stories how the leopard got its spots 
and the zebra its stripes. His answers were wholly fanciful, but at that time 
scientists could do little better. It was one thing to explain why animals have 
markings—for camoufl age, for example—but quite another to explain how
that comes about as the creature grows. The explanation now widely accepted 
is that these patterns are produced in a process of self-organization that 
also operates in very different kinds of natural phenomena. It fi nds analogies 
in the way sand ripples form or animals arrange their nests in colonies. In 
other words the description is, in the end, a mathematical one that doesn’t 
depend on biological particulars, even if it is adapted and fi ne-tuned by 
natural selection. 
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LOOK AT ME 
Animals have markings 
for all kinds of reasons. 
Some markings make 
them inconspicuous, 
others—like the 
peacock’s tail—have 
quite the opposite effect. 
The striking “eyespots” of 
the peacock’s tail feathers 
are part of a sexual 
display, an exhibitionist 
effect that is designed to 
capture the attention of 
potential mates.
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ago, we had no idea. But now we do—for spots 
and stripes can be created by clever chemistry.

Breaking out in pattern
The British mathematician Alan Turing offered the 
fi rst theory of how animal patterns are formed. 
Turing is best known for his work on the notion 
of programmable computers and for his code-
breaking exploits for the Allies at Bletchley Park 
during World War II, now made famous by the 
movie The Imitation Game. But his inquisitive 
mind took him down all kinds of paths, and in 
1952 he described a theory of how embryos 
develop from a simple, spherical egg into a 
patterned body with organs and limbs. That 
question led Turing to discover one of the most 
lovely and versatile patterning processes in nature.

Turing imagined the embryo as a ball of cells 
full of biochemical ingredients that are drifting 
through the cell liquid and reacting with each 
other to turn on or off genes that control how 
particular cells will develop. He showed how such 
a soup of chemicals could spontaneously lose 
the blandness of a uniform mixture and adopt a 
patchy structure, with more of certain ingredients 
in some places than in others.

The key is feedback. What if, Turing said, some 
chemical reactions make substances that speed 
up the reaction that actually produces them—if 
they are, in other words, auto-catalysts? This can 
create a runaway effect, in which tiny, chance 
fl uctuations in the concentration of the ingredients 
can become blown up into big differences, so 

that the mixture becomes spontaneously patchy. 
On their own, auto-catalysts would multiply until 
they overwhelm the whole mixture. But in Turing’s 
soup there were two kinds of ingredients, which 
he called morphogens (“shape formers”). Today 
researchers call one of these an activator, since it 
is auto-catalytic and boosts its own production, 
and the other an inhibitor, since it suppresses this 
self-amplifying growth of the activator. Molecules 
of the two components spread through the 
mixture like ink in water, but in Turing’s scheme the 
inhibitor spreads faster than the activator. 

When he wrote down and solved the equations 
describing this activator-inhibitor scheme, Turing 
found that blobs of activator may grow in some 
places, more or less at random, but constrained 
within little islands, separated by the effect of the 
inhibitor. He remarked that they looked like the 
dappled markings on some animals. Later, when 
Turing’s equations could be solved by computer, 
it became clear that they generally produce two 
types of pattern: arrays of spots and stripes, all 
about the same size and spaced by the same 
distance, and arranged in a more or less orderly 
fashion. We now know that Turing’s chemical 
patterns are a variation on the reaction-diffusion 
schemes described in Chapter 5, which generate 
chemical waves. In Turing’s theory, the waves are 
“frozen” in place; they are stationary.

Whether or not Turing’s theory told us anything 
about how embryos grow, it seemed to offer a 
good explanation for how animal markings—the 
spots of the leopard and the stripes of a zebra—

1 EXUBERANT 
DESIGN 
The emperor shrimp on a 
leopard sea cucumber.

2 COMPARE AND 
CONTRAST
The stripelike markings 
of the red-eyed tree frog, 
native to Central America, 
look like dripping paint. 
The markings are covered 
by the green legs when the 
frog needs to camoufl age 
itself against leaves.

3 BREAKING UP 
The stripelike marking 
patterns on this sea slug 
are punctuated by rows 
of dots, where the 
pigmented structures 
break up rather like the 
way a jet of water 
fragments into droplets.



MANY-LAYERED 
ORDER 
This close-up of the 
brightly colored mantle 
and rows of minute eyes 
on a Malaysian coral-
boring scallop gives a 
hint of the precision 
and variety of ordering 
created in the living 
world.

form. The idea is that there are biochemical 
morphogens produced in the skins of these 
creatures as they develop in the womb, which 
drift from cell to cell acting like Turing’s activator 
and inhibitor. Where there’s a lot of the activator, 
it can throw a genetic switch to turn on pigment 
production, and the pattern gets laid down in the 
embryo. As the animal grows, the pattern expands.

It wasn’t until 1990 that researchers in 
France succeeded in making Turing patterns 
experimentally in a mixture of chemicals. Today 
there are various chemical recipes for making a 
wide range of Turing patterns based on spots 
and stripes. Some are almost crystallike in their 
regularity, while others are fabulous jumbled 
labyrinths. With some care in arranging the initial 
distribution of the activator and inhibitor, you can 
make a vast galaxy of different patterns.

Animal tales
Since the 1980s, researchers have shown how 
mathematical models of biochemical pigment 

patterning using Turing’s ideas can produce the 
variety of markings we see in real animals. Zebra-
style stripes are fairly easy to make, but many 
markings are more complicated. The leopard’s 
spots, for example, are a little like clusters of 
fi ngerprints—not a single dark splodge, but 
groups of perhaps four or fi ve blobs arranged like 
black petals around a central brownish patch. The 
jaguar’s spots are still more complex: dark rings 
with a few little blobs in the center. And the giraffe 
doesn’t so much have dark spots as an entirely 
dark pelt threaded by a network of unpigmented 
hairs, a bit like the pattern of cracks in dry mud.

With a bit of ingenuity, all of these patterns 
can be generated by Turing-type activator-
inhibitor processes, although sometimes they 
need more than two ingredients. What’s more, 
these mathematical models can explain how the 
patterns depend on the shapes of the bodies they 
cover. Spots on a large patch of fur, for example, 
might turn into stripelike bands on a tapering tail, 
as they do for some wildcats. Whether ladybird 



PATCHY STRIPES 
Patterns on the tentacles 
of a sea anemone from 
the Maldives.

species have spots or stripes, and how big they 
are, may depend on how curved their domelike 
wing-covering shells are. And the mathematical 
models can mimic the kind of “unzipping” of 
stripes seen on the angelfi sh as it grows.

After reading Turing’s paper on chemical 
patterns, the eminent biologist Conrad 
Waddington wrote to Turing to suggest that his 
theory might explain butterfl y wing patterns. With 
their array of spots, stripes, chevrons, and other 
shapes, they seem like an obvious candidate. 
But it now appears that the process here is 
more complicated, involving a delicate interplay 
between diffusing biochemicals that act rather 
like morphogens, the vein structure of the wings 
themselves, and the complex genetic mechanisms 
that control the organism’s development. In other 
words, they aren’t exactly Turing patterns, but 
they are probably related. The idea is that the 
butterfl y wing contains various “sources” and 
“sinks” of the morphogens— places where they 
are produced and destroyed, ultimately controlled 

by “patterning genes.” Depending on how these 
sources and sinks are arranged, all the common 
pattern elements in butterfl y wings can be 
mimicked in mathematical models.

All this is a good sign that Turing’s process 
for producing animal markings is on the right 
track, but it’s not yet proof that the idea is right. 
To prove it, we would need to fi nd the actual 
biochemicals that act as morphogens of pattern 
formation. No one has yet managed to do that for 
pigment patterns. There is, however, pretty good 
evidence that several other biological patterns 
are made by the same kind of activator-inhibitor 
process: for example, the regularly spaced hair 
follicles of mice (and perhaps ours, too), the 
series of parallel barbs in bird feathers, the 
dunelike ridges in the mouth palate of mammals, 
and the stripelike segmentation of hands and 
feet in mammal embryos that leads eventually 
to the formation of the fi ngers and toes. It’s 
possible that something like a Turing process of 
reaction and diffusion of morphogens happens in 



plants, too, where it might produce the regular 
arrangements of leaves around a stem or fl orets 
and seeds in a fl ower head (see Chapter 3). That’s 
a possibility that Turing himself foresaw.

And Turing’s patterns might reach further still, 
into whole communities of organisms. The basic 
ingredients are, after all, quite simple: you need a 
process that amplifi es itself by positive feedback 
and another process that inhibits this, both of 
which must spread throughout the system at 
different rates. Given these elements, the patterns 
that emerge are likely to be more or less the same 
in every case. In the semi-arid regions of Africa 
and the Middle East, you can fi nd grass covering 
the dry ground in labyrinthine patches that look 
like the convoluted designs seen on some fi sh. 
The grassy patches are sustained by their ability to 
capture the water fl owing over the land after rare 
bursts of rain: a clump of grass can accumulate 
run-off water at the cost of depriving the ground 
around it. A mathematical model of this process 
suggests that on sloping ground where the fl ow 
goes one way, the result should be stripes of 
vegetation, whereas on fl at ground the fl ow is 
controlled more by random little topographical 
bumps and the pattern is more spotty. These 
models also predict—and observations of nature 
seem to confi rm it—that the pattern can change 
from spots to interweaving stripes to carpets 
punctured by holes of bare ground, as the 
amount of rainfall increases.

The self-organized world
Turing’s theory has been proposed as an 
explanation for patterns as diverse as the 
arrangement of “ant cemeteries” (where ants 
deposit the dead bodies of their peers), the 
arrangements of sand ripples in deserts, and 
the patchiness of plankton communities in the 
oceans and of crime incidence in cities. It seems 
likely to be one of nature’s universal principles 
for converting bland uniformity to interesting, 

sometimes useful, often beautiful patchiness. It’s 
not too fanciful to say that it is a means by which 
nature exercises her creativity.

And it’s a classic example of self-organization: 
how a system consisting of many components all 
interacting with one another according to some 
generally simple rules can become spontaneously 
structured into a complex design. In Turing’s original 
theory these components were the morphogen 
molecules, which move around and react with 
each other. But they can also be grains of sand, 
plants and water, entire animals. So while Turing 
wrote down his theory in terms of equations that 
described what was happening to the morphogens 
everywhere, all at once, each component of the 
system really only needs to “know” about its own 
local environment: all it sees are its neighbors, 
and all it does is follow the rules in interacting 
with them. One particular set of interaction rules 
produces the static patterns that Turing described. 
Other rules can give different structures, such as the 
fl ocking motions of birds and fi sh.

This seems to be how much of biology works, 
whether at the level of molecules interacting 
to build a creature or of whole communities of 
such creatures building their habitat. By using 
chemical pheromones and other signals, for 
example, termites coordinate with one another to 
construct towering nests out of mud and spittle, 
taller in relative terms than our own skyscrapers, 
and laced with chambers for the queen and her 
eggs, “gardens” for growing fungal food, and 
passageways that allow for ventilation. No one 
plans these edifi ces; they “build themselves” as 
each termite labors away on its own little part. 
We, too, do this; our cities are best considered as 
organisms or ecosystems themselves, with their 
own metabolism, transport networks, and patterns. 
No one, on the whole, plans them; they have 
an organic vitality, but they can also sicken and 
decay. That’s why we need to understand self-
organization: it’s what we depend on.

BODY MATH
This Christmas tree worm 
(Spirobranchus gigantus), 
a marine spirochaete 
found in tropical oceans, 
has a body plan of ornate 
yet almost mathematically 
regular design. How does 
such organized structure 
arise in a living organism? 
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STRIPES
One of nature’s universal 
marking patterns, seen 
here in an Indo-Pacifi c sea 
anemone (1) and a herd of 
Burchell’s zebras (2).
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MARKED FOR LIFE
Pelt pigmentation on large mammals comes 

in a range of patterns, from spots and stripes 
to rosettes and polygonal networks. But all 
may stem from the same basic biochemical 

patterning process. 
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THE DETAILS MATTER
Even creatures as small 
as dragonfl ies may be 
decorated with intricate 
patterns. Often these 
enhance the creature’s 
visibility, and seem to 
have a role in courtship 
and mating.



THE ART OF PLUMAGE
Bird feather patterns are among the most glorious displays in nature. 

Some of the colors here, especially the greens and blues, are not 
created by pigments, but by microscopic, regular structures in the barbs 
that refl ect light of particular wavelengths—rather like the tiny ridges of 
butterfl y wing scales. The colors are established during feather growth, 
before the nascent feather gets divided up into separate barbs, so that 

the pattern is continuous from one barb to the next. The regularly 
spaced rows of barbs are themselves also thought to be produced in a 

biochemical patterning process.
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OFF THE SCALE
Reptiles and amphibians can sport particularly 
colorful markings. Some are picked out, 
pointillist style, in different-colored scales, as 
on some snake skins. Note that the underlying 
texture of the “canvas” is also characterized 
by a regular, almost geometric pattern: 
the polygonal divisions of a turtle shell, the 
tilelike arrays of scales, the warty bumps of a 
chameleon’s skin.



ON THE WING 
Butterfl ies (and sometimes their caterpillar precursors) 

make inventive use of a small palette of pattern 
elements, such as eyespots, chevrons, stripes, and 

outlinings of veins. These are rearranged to suit many 
purposes—for example, warnings to deter predators, 

camoufl age, mimicry, and species recognition.
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AGAIN AND AGAIN
Many insects have segmented bodies; on each 
segment a particular pattern might be repeated 

more or less identically.
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BENT INTO SHAPE
The chemical patterning process outlined by 
Alan Turing seems likely to underpin beetle 

and weevil markings, where it observes precise 
bilateral mirror symmetry. These patterns seem 
to be constrained and shaped by the small size 

and the curvature of the carapace. 





271SPOTS AND STRIPES

CONSTELLATIONS OF THE SEAS
Anemones and corals show a rich variety of 
shape, pattern, marking, and texture. Some 

of the regularity is produced by wrinkling and 
buckling during growth, some is precisely 

specifi ed in the body shape by genetic 
instructions, and some comes from self-

organization of the pigmentation.
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SUBMARINE RAINBOWS
The markings on fi sh typify the generic spots 
and stripes of Turing patterns, although these 

may be elaborated or modifi ed into more 
fl amboyant designs.
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DEEP DESIGNS
Some markings on fi sh are highly orderly, such as that 
of the emperor angelfi sh (1). But the pattern produced 
by a single Turing-type biochemical process might 
change as the boundaries of the “canvas” change, so 
that, for example, stripes might break up into spotty 
markings at an edge (3). Some of these marking 
patterns continue to develop and shift as the fi sh 
grows, so that more stripes appear rather than a fi xed 
pattern just expanding with increasing body size. That’s 
what happens, for example, for the angelfi sh (1 and 2).
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MERGING ISLANDS
The skin of the leopard sea cucumber is marked 

by roughly circular islands that may merge 
via narrow necks if they are close enough—
looking like cartoons of dividing cells. The 
black borders, bright “coastal waters,” and 

superimposed eyespots make this pattern seem 
all the more surreal, like the map of a strange, 

crater-pocked planetary surface.
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CHEMICAL MAZE
These patterns, produced in a Turing-type 
mixture of chemical reagents, constantly 

grow, shift, merge, and change like replicating 
organisms, their precise shapes and forms 

dependent on the exact conditions of 
the reaction.
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BLOOMING LOVELY 
Leaves and fl owers may be decorated with 

pigmentation, often to make them more visible 
to pollinating insects. The resemblance to bird 

plumage is explicitly acknowledged in the 
name of the bird of paradise plant (1).
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BANDING TOGETHER
Is nature more beautiful than it “needs” to be? 
It is hard to fi nd an adaptive explanation for the 
richness of rainbow banding of this spiderwort 
plant (1), while the banding in bracket fungi 
(2) is simply an accidental result of its periodic 
spells of growth, not unlike the growth rings 
of a tree. As the zoologist D’Arcy Thompson 
pointed out, some things in nature look the 
way they do simply because of the details of 
how they got to be that way: form becomes a 
frozen memory of growth.
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Glossary

Activator-inhibitor system
A pattern-forming system proposed in 1952 by 
Alan Turing, in which two (or more) patterning 
infl uences interact to produce patchiness, such as 
spots or stripes.

Convection
Movement of a fl uid (a liquid or gas) usually 
caused by differences in density—which in turn 
often result from differences in temperature 
throughout the fl uid.

Fractal
A structure or object whose shape repeats at ever 
fi ner scales.

Kármán vortex street
A regular train of vortices in a fl uid fl ow, typically 
caused when the fl ow has to pass around 
some obstruction.   

Logarithmic spiral
A spiral that gets “wider” with increasing distance 
from the center. (Strictly speaking, this spiral is 
a curve described by a particular mathematical 
equation involving logarithms.) 

Phyllotaxis
The arrangement of leaves, petals, or other parts 
on a plant stem.

Periodic minimal surface
A surface that extends throughout three-
dimensional space with zero mean curvature: 
the “positive” and “negative” curvature of the 
convolutions cancel out. The surface is generally 
labyrinthine, with a shape that repeats again and 
again (is periodic), like a crystal. 

Quasicrystal
A material in which the atoms are arranged in a 
pattern that, while never quite repeating exactly, 

nevertheless is orderly enough to generate sharp 
“crystal-like” spots in X-ray diffraction. This pattern 
seems to imply that the material has a “forbidden” 
symmetry, such as fi ve- or eightfold.

Reaction-diffusion process
A process that involves some kind of reaction 
between, or combination of, its components, 
while they move around by random diffusion. 
Such systems may generate a variety of patterns, 
such as moving waves or stationary patches.

Symmetry breaking
The switch from a high to a lower degree of 
symmetry in a system—as, for example, when 
a perfectly uniform system develops a pattern, 
which makes some directions in space different 
from others.

Self-organization
A process of patterning or organization arising 
solely from the interactions between the 
components of a system, rather than being 
imposed by some outside infl uence. 

Self-similarity
The property in which a small part of an object 
looks like its whole—as, for example, with the 
branches of a tree. This is a typical property 
of fractals.

Turbulence
A state of fl uid fl ow that is chaotic: it is impossible 
to fully predict, from the fl ow structure at one 
particular time, what the fl ow will look like at 
some later time. Although turbulent fl ow looks 
disorderly, some relatively orderly structures 
such as vortices may come and go. All fl ows are 
expected to become turbulent when they are 
fast enough. 



The ideas in this book are explored in more detail 
in my trilogy Nature’s Patterns: Shapes, Flow, and 
Branches (Oxford University Press, 2009). Those 
books in turn arose from an updating of The Self-
Made Tapestry (Oxford University Press, 1999). 

Excellent general surveys of spontaneous 
pattern formation in science and nature are 
also provided by Ian Stewart in What Shape is 
a Snowfl ake? (Weidenfeld & Nicolson, 2001) 
and Fearful Symmetry (with Martin Golubitsky, 
Penguin, 1993). Nice discussions of some of 
the biological aspects of pattern formation can 
be found in Brian Goodwin’s How the Leopard 
Changed its Spots (Princeton University Press, 

2001), and in Goodwin’s rather more technical 
collaboration with Ricard Solé, Signs of Life (Basic 
Books, 2000).

Even though a great deal has changed over 
the course of a century, nothing has diminished 
the scope, vision, and elegance of D’Arcy 
Thompson’s 1917 classic On Growth and Form, 
available unabridged in a 1992 Dover edition. The 
abridged 1961 edition published by Cambridge 
University Press might be less daunting for some. 
And for a visual feast, it is still hard to beat (and 
sadly, equally hard to procure) Peter Stevens’ 
Patterns in Nature (Little Brown, 1979). 
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